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Abstract: Homology modeling has become an essential tool for studying proteins that
are targets for medical drug design. This paper describes the approach we developed that
combines sequence decomposition techniques with distance geometry algorithms for
homology modeling to determine functionally important regions of proteins. We show
here the application of these techniques to targets of medical interest chosen from those
included in the CASP5 (Critical Assessment of Techniques for Protein Structure
Prediction)  competition, including  the dihydroneopterin  aldolase from Mycobacterium
tuberculosis, RNase III of Thermobacteria maritima, and the NO-transporter nitrophorin from saliva of the
bedbug Cimex lectularius. Physical chemical property (PCP) motifs, identified in aligned sequences with our
MASIA program, can be used to select among different alignments returned by fold recognition servers. They
can also be used to suggest functions for hypothetical proteins, as we illustrate for target T188. Once a suitable
alignment has been made with the template, our modeling suite MPACK generates a series of possible models.
The models can then be selected according to their match in areas known to be conserved in protein families.
Alignments based on motifs can improve the structural matching of residues in the active site. The quality of
the local structure of our 3D models near active sites or epitopes makes them useful aids for drug and vaccine
design. Further, the PCP motif approach, when combined with a structural filter, can be a potent way to detect
areas involved in activity and to suggest function for novel genome sequences.

Keywords: CASP5, MASIA, PCPMer, sequence motifs, physical-chemical properties, Bayesian statistics, functional
annotation, drug and vaccine design.

INTRODUCTION

Rational design of drugs and vaccines is dependent on
accurate 3D structural information for proteins. Protein
modeling is particularly useful for predicting the effects of
alterations in a protein of known sequence, and for extracting
additional information from existing structures. For
example, the models we prepared for human decay
accelerating factor [1], measles virus receptor CD46 [2],
pollen allergen Jun a 3 [3] and the mitochondrial cytochrome
P450-27a1 [4] could be used to derive testable hypotheses
about the function or epitope structure of these proteins. The
best way to validate new structure prediction techniques is to
compare models to subsequently determined experimental
3D structures. For example, we prepared a model of the CP1
and 2 domains of the CD46 protein, a receptor of the vaccine
strain of measles virus, based on a template with only 20%
identity [2]. Two years later, a crystal structure for CD46
was released, which differed from our model structure by
only 1.6 Å (backbone root mean square deviation, bb-
RMSD) [5]. Even more remarkable, the orientation of the
two domains in the model was correct.
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The CASP (Critical Assessment of Techniques for
Protein Structure Prediction) competitions [6] were
established as a rational way to compare the accuracy of
methods now in use for modeling protein structures. The
sequences of 63 proteins in CASP5, occasionally with some
additional information, were provided to the ~200
participating groups, who were given 1-2 months to provide
models of the protein structures. The models were then
compared to the experimental 3D structures, released after
the competition closed. Parts of the methods described here
were developed during our participation in CASP4 [7]. We
used our participation in CASP5 to test whether our motif
recognition methods, described below, would aid in
selecting among protein alignments generated by fold
recognition servers.

Homology, or template based, modeling means that the
structure of a novel protein is predicted based on the
structure of a similar protein. As illustrated by the examples
in this article and by other models submitted in the
competition, accurate models can now be made even when
the template and target protein are only distantly related,
when the overall sequence identity is for example even
<20%. Part of this success is due to the excellent fold
recognition servers now available. Among the more powerful
ways to enhance the quality of models at low levels of
identity is to match common motifs that can be related to
3D structure [8, 9]. Sequence profile searches [10-15] and
hidden Markov Models [16-18] can find distantly related
proteins, but do not generally specify the critical locations in
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Fig. (1). Overview of our general modeling strategy, which incorporates physical chemical property (PCP) motif recognition to score
alignments from fold recognition scorers.  *indicates in-house software

the protein sequence that are relevant for structural or
functional similarity. Conventional methods to detect
common patterns of conserved residues, such as PROSITE
[19] or BLOCKS [20], rely to a large extent on strictly
conserved residues, and can miss subtle sequence motifs.

We have developed a sequence decomposition method to
identify areas of conserved physical chemical properties
(PCPs) in proteins that have low overall sequence identity,
which is implemented on our MASIA website, [21],
(http://www.scsb.utmb.edu/masia/masia.html), and in the
stand alone program PCPMer [9]. We are now testing the
use of these techniques, in combination with our previously
developed modeling methods, to improve the quality of
alignments for homology modeling. In this review we
illustrate the application of these methods to selected targets
from the CASP5 competition that are of interest to medical
research groups. These comprise drug targets, including the
bacterial enzymes RNase III, DHNA, and methionine
aminopeptidase. We also illustrate how matching PCP
motifs can be used to suggest the function of novel proteins
revealed by the genome initiative.

GENERAL MODELING STRATEGY FOR CASP5

Collecting Diverse Sequences for Target Family Members
Using BLAST

An overview of our general modeling strategy is
illustrated in Fig. (1). Protein sequences related to the target
sequence were identified with a BLASTP/PSIBLAST [22,
23] search in the non-redundant sequences (nr) available at

NCBI. For PSIBLAST we set a maximum of five iterations
with E-cutoff of 0.005 (or 0.001 for BLASTP). The
taxonomy classification was used to select sequences at the
genus level to insure that the sequences of family members
were sufficiently diverse (the ideal alignment contains
sequences that are between 25 and <80% identical). The
sequence annotation is used to discard hypothetical or
putative members, except when the target itself (e.g. T188)
is hypothetical. A multiple alignment with the target
sequence on top is then generated with CLUSTALW [24].

Physical-Chemical Property (PCP) Based Motif Detection
for a Protein Family Using MASIA

We previously demonstrated that conservation of PCPs
among sequences of protein families can be conveniently
defined in terms of five physical-chemical vector
components. These quantitative descriptors were derived
from a large number (237) of PCPs, and decomposed into
five principal components E1-E5 [25]. The five vectors were
shown to sufficiently capture the distribution of amino acids
in the original property space with an accuracy of 99%. Each
of the five vectors is a linear combination of several
properties. The first component E1 correlates best with
hydrophobicity. Conservation of these descriptors at a
residue position in a sequence family indicates physical-
chemical property conservation due to evolutionary
constraints. Such conserved positions may not be detected
by simply comparing the amino acid alphabet conservation.
The reader is referred to the original paper for more details
[25]. We demonstrated that our method can find distantly
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Table 1. List of Fold-Recognition Servers to Which METASUBMIT Sends the Target Sequence

Server Name Web site location

BIOSERVER [46] http://bioserv.cbs.cnrs.fr/HTML_BIO/frame_meta.html

BIOINBGU [47] http://www.cs.bgu.ac.il/~bioinbgu/form.html

SAM-T99 [48] http://www.cse.ucsc.edu/research/compbio/HMM-apps/T99-query.html

SUPERFAMILY [17, 49] http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/hmm.html

FUGUE [50] http://www-cryst.bioc.cam.ac.uk/~fugue/prfsearch.html

3DPSSM [51, 52] http://www.sbg.bio.ic.ac.uk/~3dpssm/html/ffrecog_simple.html

GENTHREADER [53] http://bioinf.cs.ucl.ac.uk/psiform.html

related proteins to the DNA repair protein family APE [9]
using property based sequence motifs. A Bayesian scoring
system of the PCP motifs ranked all members of the DNase-
I like SCOP-superfamiliy of APE as top scoring protein.
Other high scoring proteins were from different SCOP
classifications [26], but shared functions with the
APE/DNase-I/IPP superfamily, including phosphatase
activity and/or metal ion binding.

The ClustalW multiple alignment of the sequences from
target family is used as input to the MASIA [21]
(http://www.scsb.utmb.edu/masia/) program. The MASIA
program is a tool to detect motifs in a sequence alignment
either based on the identity of the amino acids, or
conservation of the property vectors (E1-E5) described above
[9]. At each position in the multiple alignment, MASIA
calculates the average magnitude of the five vectors, standard
deviation and relative entropy that constitutes a quantitative
enumeration of motifs (called profiles). The relative entropy
is calculated using the natural frequency of amino acid
occurrence and the observed frequency distribution in the
multiple alignment at a particular position. If the observed
distribution is significantly different compared to the natural
frequency, then the relative entropy will be high. Positions
that have entropy value greater than a cut-off of 1.25 (default
value in the program) are considered to be significant. A list
of motifs are defined for a protein family using a G-cutoff, a
parameter to filter out insignificant residue positions
allowing gaps, and L-cutoff that limits the length of
minimum size of a motif [9]. Each motif is quantitatively
expressed as a profile and is subsequently used in alignment
improvement and selection of template sequences.

TEMPLATE SELECTION AND ALIGNMENT
IMPROVEMENT USING ALIGNSCORER

To determine suitable templates, the target sequence is
submitted to several fold recognition servers (see Table 1),
which return the alignments via email. For CASP5, most
server results were available via the CAFASP website.
Alignments of templates with targets above a certain cutoff
score are collected and biological details, such as function
and location of important residues are obtained from the
literature. As there are often several PDB file names for the
same protein, the list is sorted according to the SCOP
classification of the template. In the easiest case, for targets

that have a clear structural homolog in the PDB, all servers
will list the same template as the highest scoring with
identical alignment. Our program ALIGNSCORER (or
CAFASPSCORER) is used to discriminate between
alignments and templates. As Table 2, containing excerpts
from the CAFASPSCORER results for target T184,
demonstrates, the programs rank alignments from the servers
according to the quality of fit between the template sequence
and the target motif regions detected by MASIA. A
Lorentzian-based additive scoring scheme that uses the motif
profile and the template sequence measures the goodness of
fit in the motif region [9]. We assume that the correct
alignment with a truly homologous template will match all
or most of the highly conserved motifs. The 3D-PSSM
alignments (highlighted in Table 2) were selected for
modeling the two domains of T184 (see modeling details
below). Output for these alignments from ALIGNSCORER,
a tool to determine motif scores for individual alignments,
is illustrated in Table 3.

Three-Dimensional Model Generation for Proteins Using
the Modeling Package (MPACK)

Once a suitable template and alignment is identified, we
used our in house modeling suite MPACK to generate a
model. MPACK combines EXDIS and DIAMOD to:

1. extract distances between the ith and jth atoms (dij),
dihedral angles for the backbone (ψ, φ, Ω) and side
chains (Chi) of matched residues from the template
structure with the program EXDIS [27]. To allow
flexibility, a tolerance value in the range of dij ± 0.5
Å is set for the upper and lower limits for distance
constraints. A maximum tolerance of 10° is set for
the backbone dihedral angles.

2. apply geometric constraints to fold the target
sequence using the self-correcting distance geometry
based program DIAMOD [28, 29].

The input for MPACK is an alignment with the target
and a structure file in PDB format for the template. From all
generated models, the user can select those with the lowest
target function which is a measure of the violation of the
geometric constraints during progressive folding of the target
sequence. The selected models are then energy minimized to
relax steric clashes and optimally place the loop regions and
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Table 2. The CAFASPSCORER Tool Orders the Alignments from the Various CAFASP Servers According to How Well the
Motifs Selected for the Target Match to the Template. The individual motif scores (scaled from 0 to 1) for the best
matching templates are given for the 7 PCP-motifs (listed in Table 3) from an alignment of sequences matching T184. Only
the highest scoring alignments from each server are shown. 3D-PSSM alignments chosen for the models of the two
domains are highlighted.

Server name PDB code Template SCOP # Matching scores for Motifs 1-7 of T184

PDB-Blast 1JFZ_A a.149.1 0.9462 0.6626 0.6071 0.5125 0.0000 0.0000 0.0000

PDB-Blast 1QU6_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.2793 0.8173 0.8339

PDB-Blast 1QU6_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.2866 0.5762 0.7356

PDB-Blast 1DI2_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.4969 0.8173 0.6916

PDB-Blast 1EKZ_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.3446 0.9152 0.6311

Sam-T99 1JFZ_A a.149.1 0.9462 0.6513 0.6071 0.5132 0.3567 0.0000 0.0000

Sam-T99 1DI2_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.4969 0.8173 0.6680

Sam-T99 1EKZ_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.3446 0.9152 0.6311

SUPERFAMILY 1JFZ_A a.149.1 0.9462 0.6513 0.6071 0.5024 0.3283 0.8173 0.8339

FFAS 1DI2_B d.50.1 0.0000 0.0000 0.0000 0.0000 0.4969 0.8173 0.6916

FFAS 1QU6_A d.50.1 0.0000 0.0551 0.2607 0.4978 0.2866 0.5186 0.7356

FFAS 1EKZ_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.3446 0.9152 0.6311

3D-PSSM 1JFZ_A a.149.1 0.9462 0.6513 0.6071 0.5527 0.0000 0.0000 0.0000

3D-PSSM 1DI2_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.4969 0.8173 0.6916

3D-PSSM 1QU6_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.3283 0.8173 0.8339

mGenTHREADER 1I4S_A0 a.149.1 0.9462 0.6626 0.6071 0.5257 0.0000 0.0000 0.0000

mGenTHREADER 1QU6_A1 d.50.1 0.0000 0.0000 0.0000 0.0000 0.3283 0.8173 0.8339

mGenTHREADER 1QU6_A2 d.50.1 0.0000 0.0000 0.0000 0.0000 0.2866 0.5762 0.7356

mGenTHREADER 1DI2_A0 d.50.1 0.0000 0.0000 0.0000 0.0000 0.4969 0.8173 0.6916

FUGUE2 1JFZ_A a.149.1 0.9462 0.6414 0.6071 0.5369 0.0000 0.0000 0.0000

FUGUE2 1QU6_A d.50.1 0.0000 0.0000 0.0000 0.0049 0.3283 0.8173 0.8339

FUGUE2 1STU d.50.1 0.0000 0.0000 0.0000 0.0000 0.3446 0.9152 0.6311

INBGU 1JFZ_A a.149.1 0.9462 0.6513 0.6071 0.5257 0.0000 0.0000 0.0000

INBGU 1DI2_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.4969 0.8173 0.6916

INBGU 1STU d.50.1 0.0000 0.0000 0.0000 0.0000 0.3446 0.9152 0.6311

INBGU 1QU6_A d.50.1 0.0000 0.0000 0.0000 0.0000 0.3283 0.8173 0.8339

ORNL-PROSPECT 1JFZ_D a.149.1 0.9462 0.6626 0.6071 0.5257 0.0000 0.0000 0.0000

ORNL-PROSPECT 1JFZ_D a.149.1 0.9462 0.6626 0.6071 0.0000 0.4969 0.8173 0.1512

side chains using the FANTOM program [30]. Note,
however, that due to time constraints we did not include any
special method for modeling loop regions, such as those we
have used for other examples [4]. The geometry of the model
is evaluated with PROCHECK [31]. Additional selection
criteria include conformational energy, exposed surface area
measured using GETAREA [32], RMSD deviation from the
template backbone, and determining the fit of residues in the
active site of enzymes or highly conserved regions, using
MOLMOL [33].

OVERVIEW OF THE CASP5 MODELS
GENERATED USING PCP MOTIFS

Below, we illustrate how PCP-motifs can be used to
develop homology models and discriminate functional areas
of proteins, using CASP5 targets of potential interest to
medical researchers. As with any competition, certain
measures are used to determine a ranking of the participants
performance. We show here three measures of quality for the
models we submitted. The most comprehensive way to
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Table 3. ALIGNSCORER Results (Default Conditions) for the Selected Alignments from 3D-PSSM for Target 184 with the
Templates 1JFZ (Domain 1) and 1DI2 (Domain 2). PCP-motifs for the template were isolated from an alignment of T184
with other RNase III proteins, using PCPMer.

Motif TargetMotif Template 1JFZ match Score

1 TGINFKNEELLFRALCHSSY LGYTFKDKSLLEKALTHVSY 0.9462

2 ESNEKLEFLGDAVLELFVCEILYKKYP HYETLEFLGDALVNFFIVDLLVQYSP 0.6513

3 VGDLARVKSAAAS EGFLSPLKAYLIS 0.6071

4 LAMVSRKMNLGKFLFLGKGEEKTGGRDRDSILADAF
EALLAAIYLDQGYEKIKELF

FNLLAQKLELHKFIRI------KRGKINETI

IGDVFEALWAAVYIDSGRDFTRELF

0.5527

5 DYKTALQEIVQ ----------- 0.0000

6 KNDG ---- 0.0000

7 GKGRTKKEAEKEAARIAYEKL --------------------- 0.0000

Motif TargetMotif Template 1DI2 match Score

1 TGINFKNEELLFRALCHSSY -------------------- 0.0000

2 ESNEKLEFLGDAVLELFVCEILYKKYP --------------------------- 0.0000

3 VGDLARVKSAAAS ------------- 0.0000

4 LAMVSRKMNLGKFLFLGKGEEKTGGRDRDSILADAFEALLAAIYLDQ
GYEKIKELF

--------------------------------
------------------------

0.0000

5 DYKTALQEIVQ MPVGSLQELAV 0.4969

6 KNDG GPPH 0.8173

7 GKGRTKKEAEKEAARIAYEKL GSGTSKQVAKRVAAEKL
LTKF

0.6916

Table 4. Models Described in This Review Submitted by Our Group (024) Compared to the Best Model Submitted in CASP5. The
PDB code for the template, percentage identity between target and template, FANTOM energy, RMSD and GDT score for our
models is given for each target. For comparison, the RMSD, GDT values and the number and name of the group producing
the #1 ranked model is given for each target. RMSD and GDT values are taken from the CASP5 web site,
http://predictioncenter.llnl.gov/casp5/.

Energy Results for the group with highest GDT

Target Template %ID kcal/mol RMSD Cαααα  a GDT b RMSD Cαααα  a GDT b Group
Number

Group Name

T142 1I9Z 27 (73/275) -862 3.66 65.09 3.46 72.23 035 Lambert-Christophe

T150 1CK2 32 (32/100) -392 2.15 78.65 1.89 82.56 265 Sasson-Iris

T155 1DHN 33 (40/120) -1090 1.02 93.38 0.74 98.08 012 ORNL-Prospect

T178 1JCJ 26 (55/211) -547 6.65 76.03 1.63 84.70 067 Jones

T182 1C24 42 (105/250) -1790 1.32 91.17 1.28 94.18 329 Dunbrack

T184_1 1JFZ 27 (45/164) -156 1.88 c 67.88 1.90 c 74.24 016 Levitt

T184_2 1DI2 34 (24/71) -733 1.47 c 85.07 1.68 c 87.85 334 MZ-Brussels

T188 1E01 28 (34/122) -377 2.29 77.33 2.13 78.50 100 SBI

a root-mean-square deviation (RMSD) between the model and experimental structure calculated using a sequence-dependent superposition for Cα
b the global distance test (GDT) represents an average of the maximum number of residues that can be superimposed between the experimental structure and the
corresponding model under four different distance thresholds (1, 2, 4, and 8 Å) in a sequence-dependent manner: GDT = (GDT_P1+GDT_P2+GDT_P4+GDT_P8)/4, where
GDT_Pn is the percent of residues under the distance cutoff of n Å

c RMSD between the model and experimental structure calculated on residues that fit under 4.0 Å distance cutoff (GDT_4)

compare models is to use coverage plots, which plot the root
mean square deviation (RMSD) between two sequences as a
function of the length of the sequence (Fig. (2)). A good

model should have a large coverage with low RMSD to the
experimental structure, i.e. it has a plot close to the X-axis.
Our models are similar in quality to the best submitted
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Table 5. PCPMer Identifies Nitrophorin as a Close Relative
of the DNase 1 Family. The shared motifs are those
within the metal ion binding center and are
presumably the site of heme binding. This is the
first structure of a DNase 1 superfamily member that
binds heme, rather than an isolated metal ion. The
sequence of T142 was added to the FASTA format
sequence files downloaded from a recent release of
the ASTRAL40 database, which contains about 4000
unique sequences representing most of the protein
folds in the PDB. This database was then searched
with motifs from an alignment of diverse members
of the DNase 1 superfamily with the in-house
program PCPMer. PCPMer defines motifs in aligned
protein sequences as a numerical matrix
representing conserved physical chemical properties
[9, 25]. The numerical matrices can be used to
automatically scan databases for sequence
homologs.

Score PDBfile protein

1386 1HD7_A human APE1

1338 1AKO E. coli Xth (bacterial APE1)

1330 2DNJ Bovine DNase 1

1241 1QGU_A Klebsiella pneumoniae nitrogenase alpha chain

1240 1I9Y_A inositol 5’-polyphosphate phosphatase

1237 1ACO bovine aconitase

1224 1HO5 nucleotide 5’-phosphatase

1222 1NTF T142, Cimex nitrophorin

1189 1CJA_A actin fragment kinase (slime mold)

models. A numerical summary is given in Table 4. For each
target, the RMSD and GDT scores for our model is
compared to the best model (i.e. the model with the highest
GDT) using data provided on the CASP5 Web site
http://predictioncenter.llnl.gov/casp5/. In all but one case
(T178) the RMSD and GDT values are close to those of the
best prediction. Even the T178 model is close to the
experimental structure (see the coverage plot, Fig. (2)),
except for the 20 residues in the C-terminal, where we lacked
motifs to guide the alignment. Further, no one method
yielded the best model for all targets, indicating that it is
worthwhile to compare details of the models produced by
several groups. The third illustration is perhaps the clearest
indication of quality: stereo plots of the models
superimposed on the experimental structures (Fig. (3)).
Below, we highlight some of the details from these models
that illustrate the uses of sequence decomposition in
analyzing proteins.

T142, Nitrophorin, has PCP-Motifs in Common with the
DNase 1 Superfamily

The bedbug, Cimex lectularius, secretes nitrophorin
(CASP5 target T142), a nitric oxide binding heme protein

that is a potent vasodilator, from its salivary glands to
facilitate blood sucking. Inhibitors of this enzyme might
thus be used to prevent human infestation with these pests.
Salivary nitrophorin contains motifs that are common to a
superfamily of metal binding proteins, which include DNase
1, DNA repair proteins, apurinic/apyrimidinic
endonucleases, and the inositol-5'-polyphosphate
phosphatases (IPP) [8, 34]. This is an interesting finding, as
the other proteins bind a free metal ion, not a heme group.
We were thus interested in seeing how the metal binding site
of nitrophorin differed from the non-heme metal binding
sites of DNase 1 family members. The template selected by
most fold recognition servers was the PDB file 1I9Z,
synaptojanin, an IPP that is 25% identical and about 40%
similar in the alignment used for modeling. Most of the
identical residues were in motifs for the metal centered active
site of the DNase 1 family. These include the areas around
the conserved aspartate (735 VVWFGDNYRI 745 in 1I9Z,
166 LFWIGDLNVRV 176 in T142), and histidine (837
SDHRPIYATYEA 848; in I9Z; 269 TEHRPVLAKFRV in
T142) which are essential for function in the DNase 1
superfamily enzymes. As Fig. (4) shows, the structure of
these two segments match extremely well in the template,
the model, and the determined experimental structure (PDB
code 1NTF). Two other motifs known to contribute to the
active site of the DNase 1 superfamily also match well in
both sequence and structure. Overall, the fact that the two
metal sites are so similar suggests that this nitric oxide (NO)
transporting protein evolved from enzymes that catalyze
phosphorolytic cleavage [8, 9].

As a test to see whether our PCPMer program would
recognize T142 as a homolog of the DNase 1 family, we
added the T142 sequence to the ~4000 sequences in the
ASTRAL40 structural database and searched the database
with motifs of the DNase 1 family. The Cimex nitrophorin
was listed within the first 10 entries, with a PCPMer score
that was only slightly below the IPP structure we used as
template. Another example of using PCPMer’s ability to
identify distant homologs of well-established enzyme
families in genomic databases is shown below for T188.

T155, DHNA, a Promising Target for Drug Design

Enzymes of pathogenic bacteria are one target for modern
drug design. Inhibitors of dihydroneopterin aldolase
(DHNA), an enzyme important in the folic acid pathway, are
now being considered for treatment of tuberculosis [35]. The
DHNA of Mycobacterium tuberculosis (Genbank
gi3023784), target T155, 133 residues, was 33% identical to
the best PDB template, the crystal structure (1.65 Å
resolution) of 7,8-dihydroneopterin aldolase from
Staphylococcus aureus. In this case, the motif selection
method indicated the same alignment that was returned by
several fold recognition servers, including 3D-PSSM,
Fugue, mGenThreader and Inbgu. Our model, which ranked
well according to the tabulated data (the experimental
structure has not yet been released), had a very low RMSD
value to the template (Table 4). This would indicate that
DHNA from many pathogenic bacteria should have a similar
structure, despite the variation in their sequences, and should
be good targets for design of general antibacterial agents.
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Fig. (2). Coverage or global distance test (GDT) plots for models of CASP5 targets discussed in this review. The X-axis is the percent
of residues that falls within the distance cutoff (Y-axis). The best model will be close to the experimental structure over most of the
protein sequence. Thus, the nearer the line runs to the X-axis, the better the model. The results for our models are given in bold black
lines, the gray lines are the results for models from the other >200 groups that were submitted for the same targets. (The plots were
obtained from http://predictioncenter.llnl.gov).
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Fig. (3). Stereo plots of the models prepared for the CASP5 targets (heavy black line) discussed in this article superposed on the
experimentally determined structures (given as the PDB file name of the released coordinates; light line), which were released after the
models were submitted. (a) T142 vs. 1NTF; (b) T150 vs. 1H7M; (c) T155 vs. template 1DHN (structure not yet publicly released); (d)
T178 vs. 1MZH; (e) T182 vs. 1O0X; (f) T184 vs. 1O0W (both domains); (g) T188 vs. 1O13. For T184, the two domains of the model
were separately matched to the N and C-termini of the crystal structure.
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Fig. (4). Molegos, conserved regions of sequence and structure, match well in template, model and experimental structure (left to
right) of nitrophorin, T142. This figure shows two isolated molegos, which correspond to APE molegos, 7 and 12 involved in metal
ion binding [8]) from the three structures. The two molegos are shown from the template (PDB file 1I9Z, for synaptojanin), our model
structure for T142, and the experimental structure of T142 (PDB file 1NTF, which has not yet been released).

Modeling Thermophilic Enzymes, T150, T178 and T182

There is considerable interest in studying the enzymes of
thermophiles, as the sequences are often quite different from
those of bacteria that grow at lower temperatures [36]. These
targets illustrate that thermophilic enzymes can be accurately
modeled on homologous enzyme targets from mesophiles.
Target T150 was the 102 residue ribosomal protein L30e
from Thermococcus celer (SwissProt P29160). Our MPACK
model used the yeast Saccharomyces cerevisiae ribosomal
protein L30 (PDB code 1CK9 for 20 NMR structures and
1CK2 for the minimized average structure) and the
consensus alignment from Fugue, mGenThreader and Inbgu.
Target T182, the 250 residue protein methionine
aminopeptidase (E.C. 3.4.11.18) from Thermotoga
maritima was modeled on the methionine aminopeptidase
from Escherichia coli (PDB code 1C24_A) using an
alignment with 42% sequence identity between the target
and the template. The low RMSD between the models and
the experimental structures indicate thermophilic and
mesophilic proteins have similar overall structures.

We used a motif-based approach to model target T178,
the 219 residue deoxyribose-phosphate aldolase (DERA) of
the hyperthermophilic bacterium Aquifex aeolicus, as there
were many possible alignments with the selected template.
DERA catalyzes a reversible aldol reaction between
acetaldehyde, and the acceptor substrate, D-glyceraldehyde-3-
phosphate, to generate D-2-deoxyribose-5-phosphate [37].
The reverse reaction of this enzyme allows microorganisms

to use nucleotides and even DNA in their growth medium,
by bringing pentose-5-phosphate into the glycolytic cycle
[38]. To extract PCP motifs, we used an alignment of 26
sequences for aldolase family members, primarily from
extremophilic and pathogenic bacteria. While the overall
identity to the template suggested by most fold recognition
servers, mesophilic E. coli DERA, (PDB file 1JCJ_A), was
only 26%, the 8 motifs could be matched well in two
alignments from different servers. Our model for the first
198 residues of T178, based on the mGenthreader alignment,
was very good, with a bb-RMSD of 1.58Å to the
experimental structure. However, the model deviated from
the experimental structure in the 21 residues at the C-
terminus where there are no motifs (Fig. (2)). Our model is
especially precise in the active center, and the lysine (K150),
which forms a Schiff base with the donor acetaldehyde, is in
the same orientation as in the crystal structure.

T184: a 2-Domain Target, RNaseIII

Another thermophilic protein, T184, was the probable
RNase III of Thermobacteria maritime, which is a two
domain protein [39]. The second column of Table 3 lists the
sequences of the 7 PCP motifs generated for T184 and
related RNAse III protein sequences. The matrix of these
motifs was used to rank the target-template alignments
provided by the CAFASP fold recognition servers (Table 2).
The selected template for the larger nuclease domain and
metal binding site was the RNase III of the ultrathermophile
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Table 6. PCPMer Results for Scanning the ASTRAL40 Database with PCP-Motifs Derived from Aligned Sequences Similar to
T188, a Hypothetical Protein. See the heading of Table 5 for more details about the methodology. The highest scoring
protein, 1EO1, is the modeling template. The next three finds all contain a FeS cluster in their active center. The fourth
find, carboxylesterase, is an α/β hydrolase with broad substrate specificity. A structural filter will be applied to these
finds to determine which could be functional homologs of T188.

Parameters used: R 1.25, G cutoff 2, L cutoff 4.
List of Motifs:
#MOTIF : 1:   1 MIIAIPVSENRGKDSPI 17
#MOTIF : 2:  21 FGRAPYFAFVK 31
#MOTIF : 3:  64 GAELVI 69
#MOTIF : 4:  73 IGRRA 77
#MOTIF : 5:  81 FEAMGVKVIKGASGTVEEVVN 101
#MOTIF : 6: 114 EVHDHHHHEH 123
Top hits from PCPMer

Name of the protein PDB code SCOP ID Scores in bits

Hypothetical protein *MTH1175 (Archaea, Methanobacterium thermoautotrophicum) 1E01_A c.55.5.1 417.42

Formate dehydrogenase H (Escherichia coli) 1AA6_2 c.81.1.1 397.57

Ferric enterobactin receptor FepA (Escherichia coli) 1FEP_A f.4.3.3 397.52

Xanthine oxidase C-terminal domain (Bos Taurus) 1FO4_A d.133.1.1 394.72

Carboxylesterase (Pseudomonas fluorescens) 1AUO_A c.69.1.14 388.56

Aquifex aeolicus [40]. For the C-terminus, the template was
the ds-RNA binding domain from a mesophilic protein,
PDB file 1DI2, from Xenopus laevis.

The metal ion binding center of the model matches the
final crystal structure of the target extremely well. In
particular, the motifs, EKL E FLG D AV, EVG D L A ,
DAFEAL (underlined indicate absolutely conserved residues)
that are common to RNase III enzymes from humans to
Drosophila to bacteria, match especially well in the model
to the determined structure.

The crystal structure of T184 emphasized the importance
of including both domains in a single crystal structure, as
the ds-RNA binding domain is indeed close to the
previously determined metal center of the nuclease domain.
While we could have attempted to superimpose the ds-RNA
binding domain on the active site region, this would have
required additional biological data and considerably more
time to make the model than is possible given the time
constraints of CASP5. The presence of the C-terminal
domain does not greatly affect the active site described for
the N-terminal half of the A. aeolicus protein [40]. This
means that our decision to submit the model as two
independent domains, and leave their relative orientation
open, was justified.

T188: Using PCPMer to Identify Possible Functions

This target presented a problem that is indicative of the
direction of structural biology and genomics. That is, we
have a sequence, similar to ones found in many organisms,
and we have a structure, but we still do not know the
function of the protein. Target T188 was a 124 residue
hypothetical protein from Thermotoga maritima. All the
fold-recognition servers scored another hypothetical protein,
MTH1175 from methanobacteria (PDB code 1E01) as the
best template, meaning that we were unable to suggest a
function for this protein based on the templates returned

from the fold recognition servers. Our model ranked fourth
among the models submitted in CASP5 for this target.
Nearly 80% of the residues were in structurally equivalent
positions in the model and the experimental structure.

PCPMer was then used to suggest possible functions for
this protein, by determining which other proteins contained
PCP-motifs that were common to T188 and its bacterial
relatives. A PSIBLAST search with E-value cutoff of 0.005,
which converged in 3 iterations, yielded 15 sequences
similar to T188, all of which lacked a functional annotation.
These sequences were aligned with CLUSTALW and seven
PCP-motifs were generated, using MASIA (G-cutoff 2, L-
cutoff 4, R-cutoff 1.25). The PCP-motifs were used to
screen the ASTRAL40 database of representative known
structures to detect proteins with similar motifs (Table 6).
PCPMer ranked the template we had chosen, 1EO1, highest
of the PDB files in the sequence list. The next three
proteins, with similar PCP-scores, are from different SCOP
families and have different activities. However, they all
contain a Fe-S center, suggesting that T188 must contain
motifs that correlate with the metal binding of these
proteins. PCPMer results suggest several experimentally
testable leads to determine the function of the hypothetical
protein encoded by T188.

CONCLUSIONS

The CASP5 Results Validate our Models for Use in
Allergy and Vaccine Studies

These results from our CASP5 participation indicate that
our modeling approach generates useful and high quality
models. The models are especially accurate in regions where
we could detect conserved motifs and active sites. This
validates the modeling methods used in our other
collaborative projects of proteins of high medical interest [1-
4, 41-43]. We are now preparing models of all known
allergenic proteins that will be made available via our
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structural database of allergenic proteins (SDAP) webserver
[44, 45]. The results detailed here for a wide selection of
different proteins, and varying degrees of modeling
difficulty, show how far we have come in being able to
predict the structure of a protein from its sequence and the
structure of a homolog.

PCPMer, a New Method for Protein Analysis

Our results also illustrate the use of physical-chemical
property motifs to select templates for modeling and identify
functionally important areas in novel proteins. Data from
sequence decomposition, as was done for example for T188,
can suggest function for unknown genomic sequences and in
identifying distant relatives of known proteins [8, 9]. We
have begun using this method to compare virus sequences,
to reveal areas for drug and vaccine design. The PCPMer
method and associated tools provide an alternative way to
analyze protein sequences that will have wide uses in our
future work.
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