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The alkane Gibbs energies are computed with the MoiNet neural network. MoiNet is a new type of neural net-
work that changes its topology (the number of neurons in the input and hidden layers, together with the number
and type of connections) according to the molecular structure of the chemical compound presented to the net-
work. Three molecular graph invariants are used as input data for the first layer of neurons, namely the degree,
the distance sum, and the reciprocal distance sum.

INTRODUCTION

Usual quantitative structure-property relationships (QSPR) and quantitative structure-activity
relationships (QSAR) studies require the user to specify the mathematical function of the model. If
these functions are highly nonlinear then considerable mathematical and numerical expertise is needed
to obtain significant models. In recent years this problem was solved with artificial neural networks
(ANN), %3 a class of nonlinear models in which the mathematical form of the relationship between the
input and output data is not specified. The growing interest in their application in chemistry,” in chemi-
cal engineering,* and in biochemistry® is a result of their unique modeling features.

An important problem for the chemical applications of neural networks remains the numerical
representation of the chemical structure. Various structural representations of organic compounds were
used in recent QSPR studies using Multi-Layer Feedforward (MLF) neural models: connection table
describing the substituents;® modified bond-electron matrix containing as structural information the for-
mal bond order between a pair of atoms and the atomic number Z;’ topological distance;® constitutional
descriptors and topological indices;® numerical code;'® molecular subgraphs (clusters);'! vectorial
representation of the chemical structure of the substituents;!? topo-stereochemical code describing the
environment of an atom;!>'* 3D MORSE (Molecule Representation of Structures based on Electron
diffraction);!%!6 atom type electrotopological state;!” presence of a substituent (coded with 1) or
absence (coded with 0);'® topological autocorrelation vectors.!®

Kireev?? proposed a new neural network, ChemNet, in which the input and hidden units repre-
sent the atoms from the molecule presented to the network, while the connections between the input
and hidden layers are set according to the graph distance matrix of the molecule. In the present investi-
gation we use a related kind of neural network, MolNet,! which is destined to the computation of mole-
cular properties of organic compounds using atomic descriptors as input structural parameters. MoINet
is applied for the computation of alkane Gibbs energies, giving good results both in calibration and

prediction.
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MolNet DESCRIPTION

MolNet is a new type of neural network! that changes the topology according to the structure
of each molecule presented to the network. Each non-hydrogen atom in the molecule has a correspond-
ing unit in the input and hidden layers, while the output layer has only one unit, representing the molec-
ular property under investigation. The network has a bias unit, connected to the hidden and output
units. With each molecule presented to the network the number and significance of the input and hid-
den units change. The connections between the input and hidden layers correspond to the bonding rela-
tionships of the atoms, with identically weighted connections for pairs of atoms exhibiting the same
bonding pattern. For the network MoINet-1 the bonding relationship considers the type of atoms and
bonds on the shortest path between a pair of atoms. Also, a unit that corresponds to an atom / in the
input layer is connected to the unit corresponding to the same atom 7 in the hidden layer by a connec-
tion; these connections are classified according to the chemical nature of the atoms. Input-hidden con-
nections corresponding to the same bonding relationship between two atoms either in the same mole-
cule or in different molecules have identical weights.

The connections between the hidden and output layers are classified according to the partition-
ing of the atoms by their atomic number Z, the hybridization state and the degree. This partitioning
scheme of the connections defines an atom-type contribution to the molecular property that is investi-
gated. We have to point here that even for atoms in the same class their contribution to the molecular
property depends also on the signal received from the input layer, signal that can be different for atoms
in the same class. The bias neuron is connected to each neuron in the hidden layer by connections parti-
tioned in the same way with the connections between the hidden and output layers, i.e. according to the
atom types as defined above. Also, the bias neuron is connected with the output neuron. For a molecule
with N non-hydrogen atoms, there are N? connections between the input and hidden layers, N connec-
tions between the hidden and output layers, and N + 1 connections from the bias neuron. Some connec-
tions may have identical weights according to the partitioning schemes described above.

When a molecule is presented to MolNet input unit i receives a signal representing an atomic
property computed for the atom i of the respective molecular graph. Any vertex invariant of the mole-

cular graph can be used as input for MoINet.
The connection types between the input and hidden layers (the 1H connec-
6. J 4 tions) for alkanes are determined from the topological distance between the carbon
1>2ﬁ3/\ 5 atoms. We present the structure of MolINet for 2,2,3-trimethylpentane 1 whose molec-
8 ular graph is presented in Figure 1. In the molecular graph of an alkane, the topologi-
1 cal distance between two vertices ¢ and J, dy., is equal to the number of edges (corre-
Fig. 1 - The mo- sponding to carbon-carbon single bonds) on the shortest path between the vertices
lecular graph of and j. Distances d,; are elements of the distance matrix of a molecular graph G, D(G).
2,2,3-trimethyl-  The distance matrlx of the molecular graph of 1, D(1), computed with the Floyd-

pentane 1. Warshall algorithm,?! is presented in Table 1.

Table 1

The distance matrix of the molecular graph of 2,2,3-trimethylpentane 1

w
W

0~ N b W N e
WON N R W N —m O
D et o N e O oma N
— RN NN e O = N
N OW W= O e N WA
(S I =R R U -
WO b W N = NN
WO N B W R = N
O W W W N = R W e




301

Artificial neural networks applications. 10 7 )

Each carbon atom from the molecular graph 1 corresponds to a unit with the same label in the
input and hidden layers of MolNet, as presented in Figure 2a-e. The distance matrix of 2,2,3-
trimethylpentane has five classes of topological distances, from 0 to 4, corresponding to five IH con-
nection types or parameters that are adjusted during the learning phase. For example, the topological
distance between the pairs of atoms (1 and 5), (5 and 6), (5 and 7) is equal to 4. Therefore, for the alka-
ne 1 there are six IH connections with identical weights between the above three pairs of atoms. These
six connections have an identical weight and correspond to the parameter for two carbon atoms situated
at distance 4. The classes of identical IH connections are presented in Figure 2a-e: all 8 connections
corresponding to the distance 0 (Figure 2a) have identical weights because all non-hydrogen atoms are
carbon atoms; Figure 2b presents the 14 connections between atoms situated at distance 1; the 20 con-
nections from Figure 2¢ correspond to atoms situated at distance 2; there are 16 connections corres-
ponding to carbon atoms separated by three bonds, as presented in Figure 2d; Figure 2e depicts the 6
connections between the three pairs of carbon atoms situated at distance 4.

I @ ©)

a)

Fig. 2 - The structure of the MolNet connections between the input (I) and hidden (H) layers for 2,2,3-

trimethylpentane; each neuron corresponds to the carbon atom with the same label from Figure 1. The connec-

tions between atoms with the same label are presented in a); the connections between atoms situated at distances
1, 2, 3 and 4 are presented in b), ¢), d) and ¢), respectively.

The connections between the hidden and output layers (the HO connections) are separated in
sets according to the degree of the carbon atoms: atoms with identical degree have connections with
identical weights to the output unit. The molecular graph of 2,2,3-trimethylpentane contains 5 atoms
with degree 1, and one atom with degree 2, 3, and 4, respectively; therefore, there are four types of HO
connections (adjustable weights). The connections between the bias unit and the units in the hidden
layer (the BH connections) are classified according to the same rules used for the HO connections, giv-
ing in the case of molecule 1 four adjustable weights. The structure of BH and HO connections is pre-
sented in Figure 3a-d: the bias and output connections to atoms with the degree equal to 1 are present-
ed in Figure 3a; those connecting the atoms with degree 2, 3, and 4 are depicted in Figure 3b-d,
respectively. From Figure 3a one can see that the four atoms with degree 1 (namely atoms 1, 5, 6, and
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8) have HO connections with identical weights; also, their connections to the bias unit have identical
weights. The bias unit has also a connection to the output unit (BO connection). The total number of
adjustable weights for 2,2,3-trimethylpentane is: 5 (IH connections) + 4 (BH connections) + 4 (HO
connections) + 1 (BO connection) = 14.

B
O

HOOO® P ©® D ®

a) b)

HO @O ® 0606 HOJO @B OO®

<) d)

Fig. 3 — The structure of the MolNet connections between the hidden (H) and output (O) layers for 2,2,3-tri-
methylpentane; the bias neuron is labeled with B. The connections to/from atoms with the degree 1, 2, 3 and 4 are
presented in a), b), ¢) and d), respectively.

Because MolNet is a MLF neural network, its use involves two phases: a learning and a predic-
tion phase, respectively. In the leaming phase the weights are adjusted with the backpropagation algo-
rithm after the presentation of each molecule. If a connection type is absent from a certain molecule its
value is not changed after the presentation of that molecule to the network. In a molecule, all connec-
tions from the same class are adjusted with the same value obtained by a summation of individual gra-
dients and application of the usual backpropagation with momentum equation. In the prediction phase
the molecular properties are computed with the weights determined in the learning phase. If the set of
molecules used in the prediction phase contains bonding relationships that are absent in the molecules
used in the learning phase these bonding relationships are neglected in predicting the molecular property.

MoiNet OPERATION

Data Set. MolNet is tested in a QSPR investigation of a structural determination of alkane
Gibbs energies. Because it is important to estimate the MoINet prediction power the patterns are sepa-
rated into a calibration (learning) set and a prediction (test) set. In this way it is possible to determine
the MolNet precision in predicting the Gibbs energy for alkanes that are not used in the calibration of
the model. The learning set contains 109 alkanes, while the test set contains 25 alkanes between Cg and
C,,- The structure and experimental Gibbs energies of the alkanes used in the present investigation are
taken from the literature® and are reported in Tables 2 and 3.

Number of Adjustable Parameters. MoINet has a variable topology, and the number of
adjustable parameters (connections) depends on the structure of the entire learning set of molecules.
Because for the leaming set of 109 alkanes the maximum graph distance between two carbon atoms is
7, there are 8 IH connection types. The degree of the carbon atoms is from 1 up to 4, and this gives 4
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Table 2

Alkanes used in MolINet calibration, experimental Gibbs energies, and calibration residuals for MoINet network
using RDS input atomic descriptor

Gibbs;;ergy AG

Hydrocarbon at 300 K (kJ/mol)
Exp. Residual
3-M-C; -2.12 -3.08
2,2-M,-C, - 7.42 —~-3.48
2,3-M,-C, -1.77 1.17
3-M-C; 6.60 -0.05
3-E-C, 12.70 1.28
2,2-M,-C, 2.10 -192
2,3-M,-C, 7.60 1.47
2,4-M-C 4.90 -1.34
3,3-M,-C; 4.80 0.66
2,2,3-M,-C, 6.30 5.31
n-Cy 17.67 -0.8%
2-M-C, 13.37 1.77
3-M-C, 13.79 0.61
2,4-M,-C, 13.07 -0.03
2,5-M,-C, 11.40 5.97
3,3-M,-C, 15.13 - 118
3,4-M,-C, 18.43 0.46
3-E-2-M-C, 20.68 -2.64
3-E-3-M-C, 2436 1.78
2,2,3-M,-C; 19.45 1.23
2,2,4-M,-C; 15.70 ~0.16
2,3,3-M;-C; 20.04 0.62
2,3,4-M,-C; 20.76 1.70
2,2,33-M,-C, 24.04 5.93
2-M-C, 21.60 - 0.86
3-M-Cq 22.00 -137
3-E-C, 26.40 0.26
4-E-C, 26.80 030
2,2-M,-C, 19.50 3.29
2,3-M,-C, 23.50 2.37
24-M,-C, 20.80 ~3.30
2,5-M,-C, 18.20 1.08
2,6-M,-C, 19.80 3.43
3,3-M,-C, 22.00 0.21
3,4-M,-C, 24.90 -1.91
3,5-M,-C, 22.00 - 0.41
3-E-3-M-C, 30.50 -1.30
4-E-2-M-C, 24.50 0.28
2,2,4-M-C 23.60 0.24
2,2,5-M,-C, 15.30 3.07
2,3,3-M,-C 29.40 -0.61
2,3,4-M,-C, 28.60 - 1.57
2,3,5-M,-C, 2220 0.74
2,44-M,-C 26.60 -1.19
3,3,4-M,-C, 31.40 -3.04
3,3-E,-C, 43.30 0.17
3-E-2,2-M,-C, 37.50 -0.88
3-E-2,3-M,-C; 36.80 ~4.21
2,2,3,3-M,-C; 39.00 -1.95
223,4-M,-C; 36.70 ~0.72
2.3,3,4-M,-C; 39.70 ~0.64
3-E-Cy 34.90 --0.09
4-E-C, 33.40 -0.49
2,2-M,-Cy 27.70 3.25
2,4-M,-Cy 28.80 -2.88
2,5-M-Cy 26.90 ~-2.12
33.00 -0.35

3,4-M,-Cy

3,5-M,-Cy
3,6-M,-Cy
4,4-M,-C,
4,5-M,-C,
4-nP-C,
4-iP-C,
2-M-3-E-C,
2-M-4-E-C,
3-M-4-E-C,
3-M-5-E-C,
2,2,3-M,-C,
2,2,4-M,-C,
2,2,5-M,-C,
2,2,6-M,-C,
2,3,3-M,-C,
2,3,4-M,-C,
2,3,5-M,-C,
2,3,6-M,-C,
2,44-M,-C,
2,4,5-M,-C,
2,4,6-M,-C,
2,5,5-M,-C,
3,3,5-M,-C,
3,4,4-M,-C,
3,4,5-M,-C,
2-M-3-iP-C
3,3-E,-C¢
3,4-E,-Cq
2,2-M,-3-L-C,
2,2-M,4-E-C,
2,3-M,-3-E-C;
2,3-M,-4-E-C,
2,4-M,-4-E-C,
3,3-M,-4-E-C,
3,4-M,4-E-C,
2,2,3,3-M,-C,
2,2,3,4-M,-C¢
2,2,3,5-M-C,
2,2,4,5-M,-C,
2,2,5,5-M,-C,
2,3.34-M,-C,
2,3,3,5-M,-C,
2,3,4,4-M,-C,
2,3,4,5-M,-C,
3,3,4,4-M,-C,
2,4-M,-3-iP-C;
2-M-3,3-E,-C
2,2,3-M,-3-E-C4
2,2,4-M,-3-E-C,
2,3,4-M,-3-E-C,
2,2,3,3,4-M,-C,
2,2,3,4,4-M,-C,

29.10
28.90
31.90
35.30
38.20
37.90
35.70
31.60
36.90
33.10
34.80
31.90
23.80
24.20
37.30
37.20
30.30
28.50
35.90
36.10
28.40
25.80
34.10
40.30
39.70
46.80
51.00
45.00
44 .40
36.10
45.00
42.10
42.30
50.00
47.60
48.70
46.10
32.10
32.80
21.10
49.10
41.20
49.20
42.70
58.90
64.30
60.30
66.60
59.00
61.00
68.80
63.80

—-4.09
0.42
- 0.99
-0.02
4.73
3.35
0.07
-0.40
~1.29
- 0.83
3.1
-~ 1.67
-0.12
1.37
2.25
- 1.62
- 1.49
1.32
2.76
1.10
- 4.36
- 2.08
~-2.19
- 2.89
1.83
291
3.28
1.67
1.58
1.63
--2.40
-1.41
0.64
0.09
in
-1.15
—-2.51
-4.43
-2.49
-2.46
- 4.20
-~ 1.67
~2.95
-~ 1.75
0.31
4.12
- 1.33
3.52
--0.38
- 1.86
1.17
-0.18

303
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Table 3

Alkanes used in MoINet prediction, experimental Gibbs energies, and prediction residuals for MolNet network
using RDS input atomic descriptor

Gibbs energy AG 2,2,3-M,-C, 27.20 1.51

Hydrocarbon at 300 K (kJ/mol) 3-E-2,4-M,-C, 37.80 - 183
Exp. Residual 2,2,4,4-M,-C; 35.60 2.713

IMC, 405 ey 2,3-M,-C, 32.00 243
n-C, 0.50 147 2,6M,-C 26.90 - 0.95
2-M-C, 4.90 2.03 2,7-My-Cy 28.20 139
4-M-C, 17.40 023 3,3-M,-C, 30.50 1.63
3E-C, 18.53 ~0.12 2-M-5-E-C, 31.20 0.53
2,2-M,-C, 12.15 4.67 3-M-3-E-C, 38.20 1.68
2,3-M,-C, 17.20 3.27 4-M-3-E-C, 38.60 ~-1.99
4-M-C, 21.00 —4.41 4-M-4-E-C, 40.30 1.25
4,4-M,-C, 25.80 ~2.48 3,3,4-M,-C, 38.70 ~243
3-E-2-M-C, 26.40 ~257 2,5-M,-3-E-C, 33.60 -232
3-E-4-M-C, 29.90 -2.81 2,2,4,4-M,-C 44.10 -~ 1.32

HO connection classes and 4 BH adjustable connections. The total number of adjustable weights for the
alkane leamning set is: 8 (IH connections) + 4 (BH connections) + 4 (HO connections) + 1 (BO connec-
tion) = 17. The large ratio between the number of alkanes in the learning set and the number of
adjustable weights indicates that there is no danger of overfitting.

Input Data. The input data for the neurons in the input layer are atomic topological descriptors
namely the degree DEG, the distance sum DS,%223 and the reciprocal distance sum RDS .22 The
degree of the atom / is computed with the equation:

DEG, = EN:AU.
=1

where A is the adjacency matrix. The degree vector of 2,2,3-trimethylpentane is DEG(1)={1,4,3,2,
I, 1,1, 1}.
The distance sum of the atom i is the sum of the elements in the row 7 (or column {) of the dis-

tance matrix D:

DS, =in,,

i=1

The distance sum vector of 2,2,3-trimethylpentane is DS(1) = {17, 11, 11, 15,21, 17, 17, 17%.
The reciprocal distance sum of the atom i is defined by the equation:

RDS, = ZN:RD,.]
j=1

where RD is the reciprocal distance matrix. The reciprocal distance sum vector of 1 is RDS(1) =
= {3.417, 5.333, 5.000, 4.000, 2.917, 3.417, 3.417, 3.333}.

Learning Method. The training of the ANNs is performed with the standard backpropagation
method,? until the convergence is obtained, i.e., the correlation coefficient between experimental and
calculated alkane Gibbs energy values improves by less than 107> in 100 epochs. One epoch corres-
ponds to one complete presentation of the 109 molecules in the leaming set. The connections are updated
after the presentation of each molecule. Random values between -0.1 and 0.1 are used as initial
weights. The leaming process is very sensitive to the learning rate and momentum values, and small
learning rates are used, equal to 0.05 for both the hidden and output layers. The momentum is set
between 0.30 and 0.05 for all activation functions used in this study. Both learning rate and momentum
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values are maintained constant during the training phase. In all cases the leaming phase stops after a
few hundred epochs and the results are slightly influenced by the initial random set of weights.

Activation Functions. The most commonly used activation function in chemical applications
of neural networks is the sigmoid that takes values between 0 and 1. For large negative arguments its
value is close to 0, and practice demonstrated that learning with the backpropagation algorithm is diffi-
cult in such conditions. To overcome this deficiency of the sigmoid function, the hyperbolic tangent
(tanh) which takes values between 1 and 1 is used in the present study. Both the tanh and the sigmoid
activation functions are very flat when the absolute value of the argument is greater than 10 when the
derivative has an extremely small value, leading to a poor sensitivity of the two activation functions to
large positive or negative arguments. This behavior is an important cause of the very slow rates of con-
vergence during the training of neural networks with algorithms that use the derivative of the activation
function (e. g., the backpropagation algorithm). A linear output activation function overcomes the pro-
blems of the sigmoidal function; therefore, for the output layer we use also a linear activation function.
A new type of activation function is the symmetric logarithmoid,?6?’ defined by the formula: Act(z) =
= sign () In (1 + |z|). The symmetric logarithmoid (symlog) is a monotonically increasing function with
the maximum sensitivity near zero and with a monotonically decreasing sensitivity away from zero.
Because its output is not restricted to a finite range of values this function is sensitive to large positive
or negative arguments. The symlog activation function is used for the unit from the output layer.

Preprocessing of the Data. Each component of the input (DEG, DS, or RDS vector) and out-
put (representing the target Gibbs energy value) patterns is linearly scaled between -0.9 and 0.9. We
have to point out that for the tanh output activation function the scaling is required by the range of val-
ues of the function, while for the unbounded functions (linear and symlog) the experience showed that

a linear scaling improves the leamning process.

Performance Indicators. The performances of MolNet are evaluated both for the network cal-
ibration and prediction. The quality of MolNet calibration is estimated by comparing the calculated
alkane Gibbs energies at the end of the calibration phase (G_,)) with the target values (chp), while the
predictive quality is estimated with a set of alkanes that were not used in the calibration phase by com-
paring the predicted (Gpr) and experimental values. In order to compare the performance of different
MolNet networks we use the correlation coefficient » and the standard deviation s of the linear correlation
between experimental and calculated (in calibration or prediction) Gibbs energies: AG,, /= A + B-AG

MolNet PREDICTION OF ALKANE GIBBS ENERGIES

Table 4 presents the calibration and prediction results obtained when MolNet was trained with
the DEG atomic descriptor as input data. The calibration correlation coefficient, 7., is in the range
0.948 to 0.977, and the calibration standard deviation, s_,, takes values between 3.23 and 4.89. The
prediction correlation coefficient, r_, takes values between 0.940 and 0.979, while the prediction stan-
dard deviation, s_, is in the range 2.49 to 4.17. Overall, the best calibration and prediction results are
obtained with linear output function, followed by the tanh output function.

The calibration and prediction results obtained when MolNet is trained with the DS atomic
descriptor as input data are presented in Table 5. In the calibration phase r_, is between 0.941 and
0.963, and s_, takes values between 4.11 and 5.16. In the prediction phase r takes values between
0.944 and 0.973, and s__ is in the range 2.82 to 4.03. For all MolNet networks trained with DS input
data the calibration and prediction results are of lower statistical quality than those obtained with DEG
as input data.

Table 6 presents the calibration and prediction results obtained when MolNet is trained with
RDS atomic descriptor as input data. In the calibration phase r_, is between 0.958 and 0.989, and s_,
takes values between 2.23 and 4.41. In the prediction phase Por takes values between 0.920 and 0.978,
and S is in the range 2.56 to 4.80. The Gibbs energy residuals computed with linear output function, a
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Table 4

MolNet calibration and prediction results for the computation of alkane Gibbs energies using DEG input atomic descriptor.
The table reports the number of training epochs, the hidden and output momentum (e, and o ), the output activation function,
the calibration and prediction standard deviation (s,,, and s, ) and correlation coefficient (r,,, and rpr).

All networks were provided with the tanh fxidden activation function

Hidden Output Output
Epoch momentum activation momentum 5.0 Yot Spr T
(o) function (a,)

1400 0.30 linear 0.30 3.39 0.975 3.76 0.952
1200 0.30 linear 0.15 3.32 0.976 3.64 0.955
1200 0.30 linear 0.10 3.30 0.976 3.61 0.955
1400 0.30 linear 0.05 3.28 0.977 3.58 0.956
1600 0.15 linear 0.05 3.25 0.977 3.50 0.958
1700 0.10 linear 0.05 3.24 0.977 3.49 0.958
1900 0.05 linear 0.05 3.23 0.977 3.48 0.959
200 0.15 linear 0.15 393 0.966 2.49 0.979
1600 0.15 linear 0.10 3.26 0.977 3.53 0.957
1800 0.10 linear 0.10 3.26 0.977 3.53 0.957
2000 0.30 symlog 0.30 4.25 0.961 4.17 0.940
1900 0.30 symlog 0.15 424 0.961 4.10 0.942
1800 0.30 symlog 0.10 4.23 0.961 4.09 0.942
1200 0.30 symlog 0.05 3.83 0.968 2.91 0.971
1900 0.15 symlog 0.05 4.18 0.962 3.96 0.946
2000 0.10 symlog 0.05 4.16 0.962 3.92 0.947
1800 0.05 symlog 0.05 4.16 0.962 3.92 0.947
1700 0.15 symlog 0.15 4.19 0.962 3.97 0.946
2000 0.15 symlog 0.10 4.19 0.962 3.97 0.946
1900 0.10 symlog 0.10 4.17 0.962 393 0.947
1900 0.30 tanh 0.30 4.10 0.963 391 0.947
1700 0.30 tanh 0.15 4.89 0.948 2.83 0.973
1400 0.30 tanh 0.10 3.71 0.970 2.81 0.973
1700 0.30 tanh 0.05 4.20 0.962 4.00 0.945
1600 0.15 tanh 0.05 3.71 0.970 2.83 0.973
1900 0.10 tanh 0.05 4.14 0.963 3.87 0.948
2000 0.05 tanh 0.05 4.13 0.963 3.85 0.949
1800 0.15 tanh 0.15 4.13 0.963 3.90 0.948
1500 0.15 : tanh 0.10 3.70 0.970 2.82 0.973

1800 0.10 tanh 0.10 4.13 0.963 3.86 0.949
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Table 5

307

MolNet calibration and prediction results for the computation of alkane Gibbs energies using DS input atomic descriptor.

The notations are explained in Table 4

Hidden

Epoch momentum
(o)
1800 0.30
2000 0.30
1800 0.30
1900 0.30
1700 0.18
1900 0.10
2000 0.05
1600 0.15
1700 0.15
1600 0.10
1500 0.30
1900 0.30
1800 0.30
1500 0.30
1700 0.15
1600 0.10
1100 0.05
2000 0.15
1500 0.15
1800 0.10
1700 0.30
1200 0.30
1300 0.30
1300 0.30
1100 0.15
1200 0.10
1000 0.05
1000 0.15
1300 0.15
0.10

1200

Output
activation

function

linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
symlog
symlog
symlog
symlog
symlog
symlog
symlog
symlog
symiog
symlog
tanh
tanh
tanh
tanh
tanh
tanh
tanh
tanh
tanh

tanh

Output

momentum Sl

(o)
0.30 4.60
0.15 4.40
0.10 4.34
0.05 4.28
0.08 4.17
0.05 414
0.05 4.11
0.15 4.28
0.10 423
0.10 4.22
0.30 4.60
0.15 5.16
0.10 4.74
0.05 4.44
0.05 4.67
0.05 4.66
0.05 4.36
0.15 4.72
0,10 441
0.10 5.02
0.30 4.78
0.15 4.64
0.10 4.61
0.05 458
0.05 4.52
0.05 4.50
0.05 4.49
0.15 4.58
010 4.54

0.10

4.53

0.954
0.958
0.959
0.960
0.962
0.963
0.963
0.960
0.961
0.961
0.954
0.941
0.951
0.957
0.952
0.952
0.959
0.951
0.957
0.945
0.950
0.953
0.954
0.954
0.955
0.956
0.956

0.954

3.30

4.01
3.13
4.03
3.06
3.00
3.02
3.02
2.82
3.04
293
4.03

3.28

0.966
0.966
0.963
0.964
0.945
0.967
0.944
0.968
0.969
0.969
0.969
0.973
0.967
0.971
0.944
0.963
0.966
0.966
0.967
0.969
0.969
0.970
0.969

0.968

0.969
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Table 6

MolNet calibration and prediction results for the computation of alkane Gibbs energies using RDS input atomic descriptor.

The notations are explained in Table 4

Hidden Output Output
Epoch momentum activation momentum S cal rou S, Tor
(o) function (o)

1700 0.30 linear 0.30 3.80 0.969 4.58 0.927
1800 0.30 linear 0.15 3.13 0.979 3.39 0.961
1700 0.30 linear 0.10 3.67 0.971 434 0.935
900 0.30 linear 0.05 3.62 0.972 4.24 0.938
2000 0.15 linear 0.05 223 0.989 2.60 0.977
1700 0.10 linear 0.05 3.29 0.977 3.60 0.956
500 0.05 linear 0.05 3.70 0.970 3.84 0.949
1160 0.15 linear 0.15 3.63 0.971 427 0.937
800 0.1 linear 0.10 3.62 0.972 424 0.938
900 0.10 linear 0.10 345 0.974 3.90 0.948
2000 0.30 symlog 0.30 4.03 0.965 453 0.929
1800 0.30 symlog 0.15 247 0.987 2.65 0.976
300 0.30 symlog 0.10 4.41 0.958 5.14 0.907
200 0.30 symlog 0.05 4.19 0.962 4.49 0.930
1900 0.15 symlog 0.05 3.86 0.968 4.16 0.940
1800 0.10 symlog ' 0.05 3.86 0.968 4.18 0.940
1900 0.05 symlog 0.05 2.40 0.988 2.56 0.978
1700 0.15 symlog 0.15 3.89 0.967 424 0.938
1800 0.15 symlog 0.10 243 0.987 2.60 0.977
2000 0.10 symlog 0.10 3.88 0.967 423 0.938
1000 0.30 tanh 0.30 429 0.960 5.19 0.905
1600 0.30 tanh 0.15 4.14 0.963 4.80 0.920
2000 0.30 tanh 0.10 4.04 0.965 4.57 0.928
1800 0.30 tanh 0.05 2.46 0.987 2.61 0.977
1700 0.15 tanh 0.05 2.43 0.987 2.56 0.978
1900 0.10 tanh 0.08 4.08 0.964 4.83 0.919
2000 0.05 tanh 0.05 3.94 0.966 4.40 0.933
1800 0.15 tanh 0.15 4.08 0.964 4.69 0.924
1500 0.15 tanh 0.10 4.08 0.964 4.72 0.922
0.10 tanh 0.10 245 0.987 2.57 0.978
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hidden momentum «, = 0.15 and an output momentum a_ = 0.05 are presented in Tables 2 and 3, col-
umn 4. This example is selected because it has good calibration and prediction results. Overall, the
results obtained with RDS input data are better than those obtained with DEG and DS atomic descrip-
tors. The results obtained with the three output activation functions are close and from the data reported

in Table 6 it is not possible to prefer a certain output function.

CONCLUSIONS

The MolNet neural network represents a new type of multi-layer feedforward ANN that gives
good results in predicting alkane Gibbs energies. MolNet changes its topology (the number of units in
the input and hidden layer, and the number and type of connections) according to the molecular struc-
ture of the chemical compound presented to the network."»?® Each non-hydrogen atom in the molecule
has a corresponding unit in the input and hidden layers, while the output layer contains only one unit

that provides the computed value of the molecular property.
Three atomic descriptors, namely DEG, DS and RDS, were used as input data, with best

results obtained with the RDS index. MolNet networks were trained with the tanh hidden activation
function and three output activation functions: linear, symlog and tanh. The results obtained with the three
output activation functions are close and therefore it is not possible to prefer a certain output function.
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