Extended Wiener indices. A new set of descriptors for quantitative structure-property studies

Ernesto Estrada, a Ovidiu Ivanciu, b Ivan Gutman, c Amauri Gutierrez d and Lissette Rodriguez e

a Centro de Bioactivo Químicos, Universidad Central de Las Villas, Santa Clara 54830, Villa Clara, Cuba.
b Faculty of Chemistry, Polytechnic University of Bucharest, 77206 Bucharest, Romania
c Faculty of Science, University of Kragujevac, P. O. Box 60, YU-34000 Kragujevac, Yugoslavia

ded at distance

Higher order analogues of the Wiener number are defined, providing rather precise regression models for a number of physico-chemical properties of alkanes, which certainly are much better than the analogous models based solely on the Wiener number. The new structure descriptors are defined on the basis of the

An important field of research in contemporary chemistry is the modeling and prediction of physico-chemical and biological properties of molecules.1-2 This kind of study is based on the paradigm that physico-chemical and biological properties are dependent on molecular structure. As a consequence, one of the most important points in such research is the selection of adequate descriptors containing the information stored in the molecular structure. Owing to the complexity of the molecular structure,3-4 it seems to be impossible to expect that a single set of descriptors would contain all the relevant structural information. This is the main reason why the search for novel molecular structure descriptors continues. However, this search should not be done at random; it should follow some regular procedure based on the desired attributes that a molecular structure descriptor needs to possess.

The graph-theoretical approach to quantitative structure-property and structure-activity relationships (QSPR and QSAR, respectively) is based on a well-defined mathematical representation of the molecular structure.5-6 The molecular descriptors derived therefrom are commonly named topological indices.7-8 These indices are, in general, numbers containing relevant information about the structural features of the molecule. Most of the measured physico-chemical properties are steric properties, and consequently they may be reasonably well-described by topological indices. However, in some cases these indices also contain structural information related to the electronic and/or dipolar features of molecules.9-11

The first topological index reported in the chemical literature is the so-called Wiener number.12-14 It was proposed12 by H. Wiener 50 years ago as a molecular descriptor to model physico-chemical properties of alkanes. After several years, Hosoya15 pointed out that the W number can be computed from the topological distance matrix of the graph representing the hydrogen-depleted molecule. As a consequence, W is a graph-theoretical or topological index. The Hosoya formula for the Wiener index of a (molecular) graph G is given by

\[W = W(G) = (1/2) \sum_{i \neq j} d_{ij} \]

where \(d_{ij} \) is the topological distance, that is the number of bonds separating the atoms i and j.

More recently, Hosoya16 introduced a graph polynomial, which he named the Wiener polynomial of the graph:

\[H_d(x) = \sum_{l=1}^{\delta G} \eta_l x^l \]

where \(\eta_l \) is the number of pairs of vertices at distance i and l is the longest distance in the graph. We prefer to name \(H_d(x) \) the Wiener–Hosoya polynomial and in the future it may, perhaps, be referred to as the Hosoya polynomial. The Wiener–Hosoya polynomial has an important property from the point of view of our main objective. This property, also recognized by Hosoya,16 is that the first derivative of \(H_d(x) \) evaluated at \(x = 1 \) is identical to the Wiener number:

\[H_d(1) = [dH_d(x)/dx]_{x=1} = \sum_{l=1}^{\delta G} \eta_l = W(G). \]

What we propose here is the use of \(H_d(x) \) for generating a series of Wiener-type topological indices, complementing W in the study of structure-property relationships. As will be shown, these extended Wiener indices increase significantly the quality and the predictive ability of QSPR models for several physico-chemical properties.

Extended Wiener Indices

It is a desired attribute of topological indices that they can be extended to series of ‘higher’ analogues.1-2 This extension is necessary in order to complement the simple index in such correlations in which its use as a single variable does not produce sufficiently good results. The best example of the utility of this approach is given by the higher order molecular connectivity indices put forward by Kier and Hall,18 which are extensions of the classical connectivity index of Randic.20

There have been several attempts to extend the Wiener index to series of analogous descriptors in order to complement it in QSPR and QSAR studies. For instance, Lukovits17-20 has decomposed the Wiener index into contributions coming from different types of bonds in the molecule. Klein and coworkers24 also analyzed several ways in which this number can be extended by algebraic manipulations of graph-theoretical matrices. Estrada et al. proposed a vector-matrix-vector multiplication procedure to develop series of Wiener-type indices.25-26 However, a series of ‘higher’ analogues, in which the original W number would be the first member, has not been conceived so far. In order to develop such a series we propose here the use of the higher order derivatives of the Wiener–Hosoya polynomial.

Let G be a (molecular) graph and let \(H_d(x) \) be its Wiener–Hosoya polynomial. Then we call \(H_d^{(1)}(x) \) the first-order Wiener index and denote it by \(W(G) \). By using the higher order derivatives of \(H_d(x) \), we introduce the following list of extended Wiener indices:

\[W(G) = H_d^{(1)}(x), \quad W_2(G) = H_d^{(2)}(x), \quad W_3(G) = H_d^{(3)}(x), \quad \ldots \]

For \(k = 1, 2, 3, \ldots \), the quantity \(W_k(G) = H_d^{(k)}(1) \) will be named the kth-order Wiener index or Wiener number. Of course, these indices can be calculated without the use of
was first made by Razingier et al.27 for the Wiener index. In the case of 3W this regularity is only partially obeyed, whereas for 4W a continuous decrease of D is observed when the number of atoms increases beyond nine.

A rationalization of the odd-even alternation of the isomer-discriminating power of the Wiener number and the Wiener–Hosoya polynomial is given in the Appendix.

Quantitative Structure-Property Studies

The most important aspect of the development of novel molecular descriptors is their applicability to the quantitative description of experimentally measured properties. In order to test the quality of the extended series of Wiener indices introduced here, we propose the study of several physico-chemical properties of alkanes. The properties that are studied here are: boiling point ($^\circ$C), heat capacity (J mol$^{-1}$ grad$^{-1}$) at 25 $^\circ$C, density (kg m$^{-3}$) at 25 $^\circ$C, Gibbs energy (kJ mol$^{-1}$) at 25 $^\circ$C, enthalpy (kJ mol$^{-1}$) and refractive index at 25 $^\circ$C. These properties were collected by Gak et al.28 for 134 alkanes from ‘the most reliable sources of information to avoid experimental errors’. They divided this data set into two subsets, one containing 109 and the other 25 compounds. The first was used as a training set for the development of quantitative models by using neural networks and the second was used as an external prediction set. Here we use the same training and prediction sets proposed by Gak et al.29 For the development of the quantitative models we use multivariate linear regression analysis instead of neural networks.

In Table 1 are given the results of the stepwise procedure for the development of the QSFP models. In this table we show the statistical parameters: R (correlation coefficient), s (standard deviation) and % error (average error, calculated as s/\bar{y}, where \bar{y} is the average of the respective experimental property), for both the training and the prediction series. For the training series we also included the values of the standard deviation and the percentage error obtained from the leave-one-out cross-validation procedure. These values are given in parentheses together with the corresponding values for the training set. Only the models obtained by using one, two and three parameters are reported, together with the best model found by using the present approach. The selection of the best model was carried out by considering all the statistical parameters studied for both training and prediction sets. The case of the heat capacity is exceptional: here the best model found was based on only two variables (1W and 2W) and the inclusion of any other higher analogue of the Wiener index resulted in an increase of the standard deviation in the prediction set.

As can be seen from Table 1, three properties (density, Gibbs energy and refractive index) are not well-described by the original Wiener index. The linear regressions pertaining to these properties when using solely 1W explain less than 50\% ($R^2 \leqslant 0.5$) of the variance of the experimental properties. However, inclusion of only the second-order Wiener index produces a significant improvement in these models. The percentage of the variance explained by the two-variable models is greater than 85\% (for each of the above-mentioned three properties). The best models found explain more than 95\% of the variances of these physico-chemical properties.

For all the studied properties the inclusion of the extended indices produced significant improvements in models, with the only exception being the enthalpy. The inclusion of a second variable represented improvements in the standard deviations of the training sets greater than 30\%. These improvements were greater than 50\% for the final models found: boiling point (52\%), heat capacity (43\%), density (74\%), Gibbs energy (72\%), refractive index (72\%). However, the improvement in the standard deviation for the final model describing the enthalpy was only 8\%. These improvements are also similar for the leave-one-out cross-validation of the training set, as can be
observed from the values of the standard deviation given in parentheses in Table 1. Another interesting feature is the fact that nearly all statistical parameters of the prediction set are significantly better than those corresponding to the training set. This is also observed in the results obtained by et al. who obtained average deviations between 1.3–2.7% for the training set while the correlation in the prediction set was always less than 2%. We recall that we are using here the same data sets as reported by these authors.

All these observations, the improvements in the quality of the models obtained from them, as well as the boiling point and heat capacity, have important contributions from the atom-atom terms contained in \(W \) indices, the extension to ‘higher’ order analogues, has been fulfilled for the Wiener index. The extended Wiener indices we can say that some of the studied physico-chemical properties, such as the density and the refraction index, are not dependent on the local contributions contained in \(W \) but are mainly explained by the global structural features of molecules, as measured by the distance between the most distant atoms. Other properties, such as the enthalpy, are more dependent on local contributions, as are the atom-atom contributions, and consequently there is no improvement in the quality of the models intended to describe these properties when higher order indices are introduced. There are properties, such as the Gibbs energy, for which the contributions coming from local structural features are very small and the use of higher order Wiener indices produces dramatic improvement in the quality of the models. Other cases, such as the boiling point and heat capacity, have important contributions from the atom-atom terms contained in \(W \). In these cases the use of higher order indices introduces complementary structural information and results in a further increase in the quality of the QSPR models.

It is clear that there are several possible extensions of known topological indices that produce significant improvements in the quality of the models obtained from them, as well as in the structural interpretation of such models. The extension of Wiener indices carried out in the present work constitutes one of these examples. Consequently, the extended Wiener indices are good candidates to be used in QSPR and QSAR studies as a complement of the original \(W \) index. In addition, one of the most desirable attributes for topological indices, the extension to ‘higher’ order analogues, has been fulfilled for the Wiener index. The extended \(W \) indices represent these ‘higher’ order analogues and their use is justified in the frequently occurring cases in which the original \(W \)

Table 1: Statistical results for the regression models describing physico-chemical properties of alkanes in the training and prediction sets

<table>
<thead>
<tr>
<th>Index</th>
<th>Training set</th>
<th>Prediction set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(R)</td>
<td>(s)</td>
</tr>
<tr>
<td>Boiling point/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W)</td>
<td>0.9110</td>
<td>10.95 (11.11)</td>
</tr>
<tr>
<td>(W, W)</td>
<td>0.9622</td>
<td>7.27 (7.43)</td>
</tr>
<tr>
<td>(W, W, W)</td>
<td>0.9693</td>
<td>6.59 (6.80)</td>
</tr>
<tr>
<td>(W, W, W, W)</td>
<td>0.9812</td>
<td>5.25 (5.48)</td>
</tr>
<tr>
<td>Heat capacity/J mol(^{-1}) grad(^{-1}) at 25 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W)</td>
<td>0.9432</td>
<td>8.36 (8.47)</td>
</tr>
<tr>
<td>(W, W)</td>
<td>0.9821</td>
<td>4.75 (4.84)</td>
</tr>
<tr>
<td>Density/kg m(^{-3}) at 25 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W)</td>
<td>0.6662</td>
<td>19.73 (19.93)</td>
</tr>
<tr>
<td>(W, W)</td>
<td>0.9286</td>
<td>9.86 (10.04)</td>
</tr>
<tr>
<td>(W, W, W)</td>
<td>0.9523</td>
<td>8.14 (8.34)</td>
</tr>
<tr>
<td>(W, W, W, W)</td>
<td>0.9819</td>
<td>5.11 (5.32)</td>
</tr>
<tr>
<td>Gibbs energy/kJ mol(^{-1}) at 25 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W)</td>
<td>0.6113</td>
<td>12.11 (12.18)</td>
</tr>
<tr>
<td>(W, W)</td>
<td>0.9242</td>
<td>5.87 (5.99)</td>
</tr>
<tr>
<td>(W, W, W)</td>
<td>0.9582</td>
<td>4.36 (4.54)</td>
</tr>
<tr>
<td>(W, W, W, W)</td>
<td>0.9763</td>
<td>3.38 (3.49)</td>
</tr>
<tr>
<td>Enthalpy/kJ mol(^{-1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W)</td>
<td>0.9619</td>
<td>1.19 (1.21)</td>
</tr>
<tr>
<td>(W, W)</td>
<td>0.9622</td>
<td>1.19 (1.21)</td>
</tr>
<tr>
<td>(W, W, W)</td>
<td>0.9629</td>
<td>1.19 (1.22)</td>
</tr>
<tr>
<td>(W, W, W, W)</td>
<td>0.9791</td>
<td>1.09 (1.13)</td>
</tr>
<tr>
<td>Refractive index at 25 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W)</td>
<td>0.6986</td>
<td>9.78 (9.88)</td>
</tr>
<tr>
<td>(W, W)</td>
<td>0.9334</td>
<td>4.93 (5.03)</td>
</tr>
<tr>
<td>(W, W, W)</td>
<td>0.9582</td>
<td>3.94 (4.09)</td>
</tr>
<tr>
<td>(W, W, W, W)</td>
<td>0.9801</td>
<td>2.76 (2.91)</td>
</tr>
</tbody>
</table>

* Standard deviations and the % error for the leave-one-out cross-validation of the training set are given in parentheses together with the corresponding values for the model.
number does not suffice for constructing a predictive model of satisfactorily high accuracy.

Appendix: An Even-Odd Regularity for the Wiener–Hosoya Polynomial

Consider a (connected) bipartite graph G, possessing a vertices of one color (say, black) and b vertices of another color (say, white). Thus G possesses $n = a + b$ vertices. Recall that trees, and therefore molecular graphs of alkanes, are bipartite.

Any path in G goes alternately through black and white vertices. For instance, a shortest path starting and ending at a black vertex has the form black–white–black–white–...–black–white–black and is therefore necessarily of even length. Consequently, the distance between any two black vertices is even. Similarly, the distance between any two white vertices is also even, whereas the distance between a black and a white vertex is odd. This implies that in the graph G there are $\binom{a}{2} + \binom{b}{2}$ pairs of vertices at even distances and ab pairs of vertices at odd distances.

As before, we denote the number of vertex pairs at distance i by η_i. The above conclusions are then rewritten as:

$$\eta_2 + \eta_4 + \eta_6 + \cdots = \binom{a}{2} + \binom{b}{2}$$

$$\eta_1 + \eta_3 + \eta_5 + \cdots = a \cdot b$$

(1)

If the number of vertices, n, is even, then either both a and b are even or both a and b are odd. Therefore the left-hand side of eq. (1) may assume either even or odd values. If, however, the number of vertices is odd, then either a is even and b is odd or vice versa, but the product ab is necessarily even. Consequently, the sum of the odd coefficients of the Wiener–Hosoya polynomial must assume only even values. This means that for bipartite graphs of odd n, there exist fewer possible combinations for these coefficients, pointing towards a lower isomer-discriminating power than in the cases $n - 1$ and $n + 1$.

In the case of the Wiener number the situation is analogous. The contribution to W coming from vertex pairs at even distances, namely $2\eta_2 + 4\eta_4 + 6\eta_6 + \cdots$, is necessarily even. On the other hand, the contribution coming from vertex pairs at odd distances, namely $\eta_1 + 3\eta_3 + 5\eta_5 + \cdots$ has the same parity as $\eta_1 + \eta_3 + \eta_5 + \cdots$ that is, the same parity as ab. Therefore, if n is even, then the Wiener number may be either even or odd. If, however, n is odd, then the Wiener number must be even. Therefore, in the case of bipartite graphs with an odd number of vertices there are fewer possible values that W may assume than in the case of similar-sized graphs with an even number of vertices. Hence, for odd n, the isomer-discriminating power of W could be expected to be smaller than for $n - 1$ or $n + 1$.

No restriction in parity of the above mentioned type exists for $W(G)$, $3W(G)$, etc., which is in agreement with the finding that the isomer-discriminating power of these topological indices does not oscillate with the parity of the number of vertices (cf. Fig. (1)).

References

Received in Montpellier, France, 15th December 1997; Paper 7/09255E