FORTRAN 77 COMPUTER PROGRAM FOR CALCULATING THE TOPOLOGICAL INDEX J FOR MOLECULES CONTAINING HETEROATOMS

Alexandru T. Balabana and Ovidiu Ivanciucb

aPolytechnic Institute, Organic Chemistry Department, Splaiul Independenței 313, 76206 Bucharest, Roumania

bPolytechnic Institute, Organic Chemistry Department, 1900 Timisoara, Roumania

A FORTRAN 77 computer program is presented, which allows the computing of the topological indices \(J \) (average distance sum connectivity) and PDS \((p) \) (parametrized distance sum), taking into account the presence of unsaturation, aromaticity and the chemical nature of the atoms in the molecule. \(J_X \) and PDSX are based on electronegativities of heteroatoms, while \(J_Y \) and PDSY are based on covalent radii of heteroatoms. Graphs are encoded in an efficient and economical manner.

Molecular topology determines a large number of molecular properties, ranging from physico-chemical and thermodynamic properties to chemical reactivity and biological activity. Organic molecules are represented by hydrogen-depleted graphs depicting the covalent bonds between non-hydrogen atoms. The topology of a chemical structure can be encoded in matrix form by the use of the adjacency matrix or the distance matrix.1

The adjacency matrix \(\mathbf{A}(G) \) of a graph \(G \) with \(N \) vertices, \(\mathbf{A}(G)=A \), is a square \(N \times N \) symmetrical matrix which contains information about the connectivity of vertices in \(G \). Its entries are defined as:

\[
A_{ij} = \begin{cases}
1, & \text{for vertices } i, j \text{ adjacent} \\
0, & \text{otherwise}
\end{cases} \quad (1)
\]

The distance matrix of a graph \(G \) with \(N \) vertices, \(\mathbf{D}(G)=D \), is a square \(N \times N \) symmetrical matrix, whose entries, \(d_{ij} \), are equal to the number of edges connecting vertices \(i \) and \(j \) on the shortest path between them.

The two types of matrices are interrelated and the distance matrix can be computed from the connectivity matrix using a simple algorithm based on higher powers of the adjacency matrix.3
From a practical point of view, a more economical way of expressing the topology of a chemical structure is represented by another class of graph invariants, usually referred to as topological indices. A topological index (TI) is a number which characterizes the bonding topology of a molecule.

Although in their origins TIs were developed for the purpose of obtaining correlations with a variety of physico-chemical properties of chemical substances, namely QSPR (Quantitative Structure-Property Relationships), their range of applications was extended to bibliographical documentation of chemical compounds and QSAR (Quantitative Structure-Activity Relationships).

An almost general deficiency of topological indices is that they do not characterize uniquely the topology of a molecular graph, but are more or less degenerate, i.e. two or more nonisomorphic structures may lead to the same numerical value for a certain topological index. High structural selectivity of a TI is highly needed for bibliographical indexing, while in QSPR and QSAR the essential characteristic of a TI is to reflect structural information in a proper way, in connexion with the property under investigation.

A brief review of the most used TIs follows.

TIs M_1 and M_2, the Zagreb group indices, are based on the adjacency matrix:

$$M_1 = \sum_{i=1}^{N} v_i^2$$

$$M_2 = \sum_{\text{edges } ij} (v_i v_j)^{1/2}$$

where v_i is the degree of the vertex i in the hydrogen-suppressed graph.

The connectivity index χ, similar to the M_2 index, was introduced by Randic:

$$\chi = \sum_{\text{edges } ij} (v_i v_j)^{1/2}$$

The TI Z was introduced by Hosoya:

$$Z = \sum_{k=0}^{[N/2]} p(G,k)$$

where $p(G,k)$ is the number of ways in which k edges are chosen from
the graph G in such a way that no two of them are adjacent; $N/2$ in square brackets is the smallest integer not exceeding the real number in them. By definition, $p(G,0)=1$, while $p(G,1)$ equals the number of edges in the molecular graph.

The path number index W, defined by Wiener, equals the half-sum of the off-diagonal elements of the distance matrix:

$$W = \frac{1}{2} \sum_{i,j \neq i} d_{i,j}$$ \hspace{1cm} (6)

The topological index $J^{19,20}$ (average distance sum connectivity) is defined by the formula:

$$J = \frac{q}{q-p+2} \sum_{\text{edges } ij} \left(\frac{s_i s_j}{d_{ij}} \right)^{1/2}$$ \hspace{1cm} (7)

where the summation is over all edges e_{ij} of the molecular graph. The number of edges and vertices in the molecular graph are q and p, respectively. The distance sum s_i for vertex i represents the sum of topological distances from vertex i to all other vertices in the graph, i.e., $\sum_{j} d_{ij}$.

Owing to the factor $q/(q-p+2)$, the index J does not increase automatically with the increasing number of vertices and rings, unlike most TI's. It has a very low degeneracy, as was proved analytically and tested with a computer program. For many infinite graphs, J attains a finite limit, e.g., for an infinite linear alkane, J tends towards $J=3.14159$. A mathematical study of the branching problem has revealed that among all TI's under consideration, J is the only one which orders trees (molecular graphs of alkanes) up to heptane in a similar manner to Bertz's graph invariants.

The widely used informational TI's are those defined by Bonchev and Trinajstic:

$$I^E_D = N^2 l_b(N^2) - N l_b(N) - \sum_{i=1} 2k_i l_b(2k_i)$$ \hspace{1cm} (8)

$$\overline{I}^E_D = - \sum \frac{2k_i}{(N^2-N)} l_b[2k_i/(N^2-N)]$$ \hspace{1cm} (9)

$$I^U_D = U l_b(U) - \sum k_i l_b(i)$$ \hspace{1cm} (10)

$$\overline{I}^U_D = - \sum \frac{k_i}{U} l_b(i/U)$$ \hspace{1cm} (11)
where k_i is the number of topological distances of length i in the molecular graph.

A comparison of the structural selectivity between six TI's: H_1, W, Z, χ, I_b^E and J was reported26 for a fairly large sample of hydrocarbons. The chemical structures on which these indices were tested were all constitutional isomers of alkanes with 5-12 carbon atoms (659 structures) and all monocyclic and bicyclic saturated hydrocarbons with 4-8 carbon atoms (376 structures). Another comparison between these TI's consisted in the distribution of their numerical values for classes of constitutional isomers, exemplified by the 35 nonane isomers. It was concluded that J has the lowest degeneracy among the six TI's tested, but afforded less satisfactory correlations than some other TI's.

For the presence of heteroatoms in molecules, several approaches were proposed. The first and the widely used one is Randic's molecular connectivity index,13 modified by Kier and Hall.9,10 This method takes into account the number of valence electrons and was successfully applied in QSAR. Other methods were developed by Trinajstic and coworkers27 and by Basak and coworkers.28

A different approach was proposed in order to take into account the periodicity of chemical properties for heteroatoms,29 based on heteroatom electronegativities and on heteroatom covalent radii, respectively.

The effect of a heteroatom is characterized by its calculated relative electronegativity using a two-parametric linear equation. The two parameters for an atom i are Z_i (atomic number) and G_i (the number of the group in Mendeleev's short form of the Periodic System):

$$X_i = 0.4196 - 0.0078Z_i + 0.1567G_i$$ \ (12)

The calculated relative electronegativity is relative to the calculated electronegativity for carbon.

The second method of characterizing the effect of a heteroatom i is based on its relative covalent radius Y_i, based on calculated covalent radii of carbon. Parameters Y_i are obtained according to equation:

$$Y_i = 1.1191 + 0.0160Z_i - 0.00537G_i$$ \ (13)

In order to obtain the TI J for heteroatom-containing molecules (JX and JY) the vertex distance sums s_i are multiplied by the parameters X_i or Y_i, corresponding to the chemical nature of the
atoms and with a scaling factor F_X or F_Y, and then we apply the usual formula (7). Factors F_X and F_Y, which in earlier papers were assumed to be 1, are introduced now for enhancing or depressing the effect of heteroatoms; for carbon, $F_X=F_Y=1$.

We now define two new TI's, electronegativity- and sterically-parametrized distance sums, $PDSX$ and $PDSY$, respectively:

$$PDSX = \sum_i F_X X_i s_i$$
$$PDSY = \sum_i F_Y Y_i s_i$$ \hspace{1cm} (14)

These indices increase steadily with increasing number N of atoms, like most TI’s, and especially like the Wiener index W. For n-pentane, isopentane and neopentane the W values are 40, 36 and 32, respectively.

COMPUTER PROGRAM JHET

In order to compute TI’s JX, JY, $PDSX$ and $PDSY$, the computer program JHET was developed, which takes into account the presence of unsaturation, aromaticity and the chemical nature of the atoms in the molecule.

The program, which was written in FORTRAN-77 and implemented on a CORAL 4030 computer, is intended to be user-friendly and was designed to operate in two different ways: interactively with the operator from the terminal, and through the agency of two files stored on a mass-disk. The listing of the program is presented in FIGURE 1.

A brief description of the main parameters and matrices of the program follows.

- **NAT** - number of atoms
- **NB** - number of bonds
- **IBOND** - bond type index, having values 1, 2, 3 and 4 for simple, double, triple and aromatic bonds, respectively
- **NSB** - number of supplementary bonds
- **IBO** - index of saturation, having value 1 if the molecular graph has only single bonds, and value 2 otherwise
- **NAME(30)** - array containing the name of the chemical compound
- **NZ(30)** - array containing the atomic number of the atoms
- **ICOD(30)** - the connectivity code of the molecular graph
JBD(30) - array containing the bond type index corresponding to the bonds coded in IC0D

ISB(30,2) - matrix containing the supplementary bonds; the number of the two atoms of bond i are located in the pair ISB(i,1) and ISB(i,2), respectively

A(30,30) - adjacency matrix

D(30,30) - distance matrix

PA(2,60) - matrix containing the calculated relative electronegativities and covalent radii, respectively; PA(1,zi) contains the calculated relative electronegativity and PA(2,zi) the calculated relative covalent radius of the element with the atomic number zi

DS(30) - array containing the distance sums

UTIX(30) - array containing the electronegativity vertex topological indices (VTI's)

VTIY(30) - array containing the steric VTI's

JX - electronegativity-parametrized TI J

JY - sterically-parametrized TI J

SF - scaling factor

PDSX - electronegativity-parametrized distance sum

PDSY - sterically-parametrized distance sum

First, from the terminal, the operating mode has to be chosen through the values of two indicators: INTR and IOUT. Input data can be supplied from the terminal (INTR=1) or from a datafile (INTR=2) and results are directed to the terminal (IOUT=1) or to a datafile (IOUT=2). Then the scaling factor SF is introduced.

If input data are provided from the terminal, the following routine has to be performed for every molecular structure:
- the name of the compound, NAME, is introduced. If the set of molecular structures is exhausted, a return command (<CR>) must be given at this stage and the program stops.
- the number of atoms, NAT, and the number of bonds, NB, are introduced.
- the vertices of the input structure are arbitrarily labelled with numbers between 1 and NAT, and for each bond between vertices I and J the bond order IBOND is supplied in a DO cycle running over the NB bonds.
- in another DO cycle, the atomic number Z of every atom is introduced.

FIGURE 2 presents the output of the program JHET with input
data supplied from the terminal.

Alternatively, if data are provided from a datafile, the program opens the file JHIN.DAT, where structural information must be previously introduced. A somewhat different way of coding is used, in comparison with the one used if input data are provided from the terminal. This is a more compact and space-saving procedure of coding a molecular graph.

If the molecular graph is a polycyclic one, we define the NSB quantity, i.e. the minimum number of bonds by whose removal the graph is transformed into a tree. It is easy to observe that NSB equals the cyclomatic number of the graph, i.e. the number of rings in the definition of polycyclic compounds according to the IUPAC and Chemical Abstracts nomenclature systems.

The molecular structure is transformed into an arbitrary spanning tree by removing NSB bonds. An arbitrary vertex is defined to be the focal vertex of the tree and is numbered with 1. The rest of NAT-1 vertices are numbered in such a way that on every path of the tree if \(d(1,j_1) < d(1,j_2) \) then \(j_1 < j_2 \).

The tree is coded by a sequence of numbers, in which at the position 1 appears the number of the vertex closer to the focal one to which is bonded atom \(i+1 \). Thus, the sequence begins with the digit 1, the vertex to which atom bearing number 2 is bonded, then the second digit indicates the vertex bonded to atom number 3, closer to the focal point, and so on.\(^{30,31}\)

Thus, every polycyclic compound can be coded by a tree-code and a sequence of NSB edges which transform the tree into the original polycyclic graph.

We have to note that this code is not unique, but depends on the vertex defined to be the focal one, and on the selection of the spanning tree. If we impose a restrictive condition, namely that the sequence of digits, read as a number in a NAT-1 base, is the minimal one, we obtain a unique code for a given tree. It is important to note that this condition is not restrictive for the input of the program.

Taking into account the above way of coding a molecular structure, the input information read from the file JHIN.DAT is contained in the following items:
- Item 1 contains the name of the compound, NAME, in FORMAT 30A1.
- Item 2 contains the values for three indicators: NAT (number of atoms), NSB (number of supplementary bonds reforming the original graph from the spanning tree) and IBO (index of bonds),
in FORMAT 312.

- Item 3 contains the code of the spanning tree of the graph, ICOD,
in FORMAT 3012.

- Item 4 contains the array JBO in FORMAT 3011; JBO(I) contains
the bond index of the bond I, between vertices I+1 and
ICOD(I). If IBO=1, this item is missing.

- Item 5 contains matrix ISB in pairs ISB(I,1) and ISB(I,2)
corresponding to the vertices forming the supplementary
bond I, in FORMAT 3012. If NSB=0, this item is absent.

- Item 6 contains the bond indices of the supplementary bonds,
in FORMAT 3011, read in the array JBO. If NSB=0 or IBO=1,
this item is missing.

- Item 7 contains the array NZ in FORMAT 3012.

Based on the input data, the program constructs the adjacency matrix
A and the initial distance matrix, whose entries are 1/b if between atoms
i and j there exists a bond with the bond order b, otherwise d(i,j)
equals 0. For bonds in aromatic rings, b=1.5.

Then subroutine DIST computes the distance matrix D, and subroutine
SJH computes TI’s JX, JY, PDSX and PDSY. If IOUT=1, the values of the
TI’s are displayed on the terminal. In the other case, when IOUT=2,
the output is directed to the file JHOUT.DAT and the program writes
an item containing NAME, JX, JY, PDSX and PDSY in FORMAT 1X,3OA1,
4(2X,F14.6).

FIGURE 3 contains datafile JHIN.DAT in which input data is stored.
Datafile JHOUT.DAT containing output data in a test run is presented
in FIGURE 4.

It can be observed from FIGURE 4 that if the connectivity of the
heteroatom increases from 1 to 4, JX and PDSX decrease markedly whereas
JY and PDSY increase slightly in the following three series: butylamine
- N-methylpropylamine - diethylamine; isobutylamine - sec-butylamine
- N-methylisopropylamine - N,N-dimethylethylamine; tert-butylamine
- tetramethylammonium. On the other hand, on comparing primary amines one
can observe that JX and JY increase whereas PDSX and PDSY decrease with
increasing branching.

These observations agree with earlier data on the heteroatom-modified
index J, and on the Wiener index. Indeed, the above three series have
PDSY values which are close to the Wiener index for n-pentane, isopentane
and neopentane, respectively; for PDSX the values have a slightly larger
spread. The above three hydrocarbons also served for comparing other
TI’s.32,33
PROGRAM JHET

PROGRAM JHET

THIS PROGRAM CALCULATES THE TOPOLOGICAL INDICES
J (AVERAGE DISTANCE SUM CONNECTIVITY) AND
PDS (PARAMETRIZED DISTANCE SUM), TAKING INTO ACCOUNT
THE PRESENCE OF UNSATURATION, AROMATICITY AND
THE CHEMICAL NATURE OF THE ATOMS IN THE MOLECULE,
ACCORDING TO ELECTRONEGATIVITIES OR COVALENT RADIIS

REFERENCES:

FIRST, FROM TERMINAL, TWO INDICATORS AND THE SCALING FACTOR
ARE SUPPLIED:

INTR=1 : DATA IS SUPPLIED FROM THE TERMINAL
 =2 : DATA IS SUPPLIED FROM A DATAFILE

IOUT=1 : RESULTS ARE DIRECTED TO THE TERMINAL
 =2 : RESULTS ARE DIRECTED TO A DATAFILE

SF : SCALING FACTOR FORMAT : F10.3

INPUT DESCRIPTION:

IF INTR=1 THE FOLLOWING DATA ARE PROVIDED FROM TERMINAL:

NAME(30) : THE NAME OF THE COMPOUND

NAT : NUMBER OF ATOMS FORMAT : I2
THE UPPER VALUE OF NAT IS 30

NB : NUMBER OF BONDS

BONDING DATA : I, J, IBOND
I AND J ARE THE NUMBERS OF THE ATOMS FROM THE
TWO ENDS OF THE BOND

IBOND=1 : SINGLE BOND
 =2 : DOUBLE BOND
 =3 : TRIPLE BOND
 =4 : AROMATIC BOND

Z DATA : THE ATOMIC NUMBER Z IS INTRODUCED FOR EVERY ATOM.

AFTER FINISHING ONE MOLECULAR STRUCTURE COMPUTATION, THE
USER IS ASKED IF ANOTHER RUN IS TO BE PERFORMED. IF THE

FIGURE 1. Program JHET
ANSWER IS 'N', THE PROGRAM STOPS AND IF IT IS 'Y' THE
PROGRAM SEeks THE NEXT MOLECULAR STRUCTURE

IF INTR=2 INPUT DATA ARE READ FROM THE FILE JHIN.DAT

NAME(30) : THE NAME OF THE COMPpOUND

NAT,NSB,IBO : FORMAT 312
 NAT - NUMBER OF ATOMS
 NSB - NUMBER OF SUPPLEMENTARY BONDS (CYCLOMATIC NUMBER)
 IBO - INDEX OF SATURATION
 IBO=1 : THE COMPOUND HAS ONLY SINGLE BONDS
 =2 : THE COMPOUND HAS DOUBLE, TRIPLE OR AROMATIC
 BONDS

ICOD(30) : THE CONNECTIVITY CODE FOR THE SPANNING TREE OF THE
 MOLECULAR GRAPH, IN FORMAT 3012

JBO(30) : ARRAY CONTAINING THE BOND TYPE INDEX CORRESPONDING
 TO THE BONDS CODED IN ICOD, IN FORMAT 3011
 IF IBO=1, THIS ITEM IS MISSING

ISB(30,2) : MATRIX CODING THE NSB BONDS. A BOND IS CODED BY
 A PAIR ISB(I,1) AND ISB(I,2), GIVING THE
 NUMBERS OF THE TWO ATOMS OF THE BOND IN
 FORMAT 3012
 IF NSB=0, THIS ITEM IS MISSING

JBO(30) : ARRAY CONTAINING THE BOND TYPE INDEX CORRESPONDING
 TO THE BONDS CODED IN ISB, IN FORMAT 3011
 IF IBO=1 OR NSB=0 THIS ITEM IS MISSING

NZ(30) : ARRAY CONTAINING THE ATOMIC NUMBER OF THE
 ATOMS, IN FORMAT 3012

AFTER FINISHING ONE MOLECULAR STRUCTURE COMPUTATION, THE
PROGRAM AUTOMATICALLY LOOKS TO SEE IF DATA FOR ANOTHER
MOLECULE EXISTS

OUTPUT DESCRIPTION :

JX : ELECTRONEGATIVITY TOPOLOGICAL INDEX J

JY : STERIC TOPOLOGICAL INDEX J

PDSX : ELECTRONEGATIVITY PARAMETRIZED DISTANCE SUM

PDSY : STERICALLY PARAMETRIZED DISTANCE SUM

IF IOUT=2, RESULTS ARE TYPED IN FILE JHOUT.DAT IN AN
ITEM CONTAINING NAME, JX, JY, PDSX AND PDSY IN
FORMAT 1X,30A1,4(2X,F14.6)

WORK MATRICES :

A(30,30) - ADJACENCY MATRIX

D(30,30) - DISTANCE MATRIX

FIGURE 1. (continued)
CHARACTER*1 NAME(30),ANS
DIMENSION A(30,30),D(30,30)
DIMENSION PA(2,60),NZ(30)
DIMENSION ICOD(30),JBO(30),ISB(30,2)
REAL JX,JY
COMMON A,D,PA,NZ
PA(1,5)=0.851
PA(2,5)=1.038
PA(1,6)=1.000
PA(2,6)=1.000
PA(1,7)=1.149
PA(2,7)=0.963
PA(1,8)=1.297
PA(2,8)=0.925
PA(1,9)=1.446
PA(2,9)=0.887
PA(1,14)=0.937
PA(2,14)=1.128
PA(1,15)=1.086
PA(2,15)=1.091
PA(1,16)=1.235
PA(2,16)=1.053
PA(1,17)=1.384
PA(2,17)=1.015
PA(1,33)=0.946
PA(2,33)=1.379
PA(1,34)=1.095
PA(2,34)=1.341
PA(1,35)=1.244
PA(2,35)=1.303
PA(1,52)=0.954
PA(2,52)=1.629
PA(1,53)=1.103
PA(2,53)=1.591
10 TYPE 100
READ(5,101,ERR=10)INTR
IF(INTR.NE.1.AND.INTR.NE.2)GO TO 10
11 TYPE 102
READ(5,101,ERR=11)IOUT
IF(IOUT.NE.1.AND.IOUT.NE.2)GO TO 11
12 TYPE 121
READ(5,122,ERR=12)SF
IF(INTR.EQ.2)OPEN (1,FILE='JHIN.DAT',STATUS='OLD')
IF(IOUT.EQ.2)THEN
OPEN (2,FILE='JHOUT.DAT',STATUS='NEW')
WRITE(2,120)
ENDIF
1 CONTINUE
DO 9 I=1,30
NAME(I)='
DO 9 J=1,30
A(I,J)=0.

FIGURE 1. (continued)
D(I,J)=0.

CONTINUE

IF(INTR.EQ.1)THEN
 TYPE *,','
 TYPE 103
 READ(5,104)NQ,(NAME(I),I=1,NQ)
 TYPE 105
 READ(5,106,ERR=13)NAT
 IF(NAT.GT.30)THEN
 GO TO 1
 ENDIF

 TYPE 107
 READ(5,106,ERR=14)NB
 TYPE *,','
 DO 2 K=1,NB

 TYPE 108,K
 READ(5,112,ERR=15)I,J,IBOND
 IF(IBOND.LT.0.OR.IBOND.GT.4)GO TO 15
 IF(IBOND.EQ.4)THEN
 D(I,J)=1./1.5
 ELSE
 D(I,J)=1./FLOAT(IBOND)
 ENDIF
 D(J,I)=D(I,J)
 A(I,J)=1.
 A(J,I)=1.

2 CONTINUE

 TYPE *,','
 DO 3 I=1,NAT

 TYPE 109,I
 READ(5,106,ERR=16)NZ(I)

3 CONTINUE

ELSE
 KINDR=0
 READ(1,104,END=999)NQ,(NAME(I),I=1,NQ)
 READ(1,106)NAT,NSB,IBO
 IF(NAT.GT.30)THEN
 KINDR=1
 ENDIF
 TYPE 201,(NAME(I),I=1,NQ)
 TYPE 220

 ENDIF

 NAT1=NAT-1
 READ(1,110)(ICOD(I),I=1,NAT1)
 IF(IBO.EQ.1)THEN
 DO 8 I=1,NAT1
 JBO(I)=1
 8 CONTINUE

 ELSE
 READ(1,111)(JBO(I),I=1,NAT1)

 ENDIF

 DO 4 I=1,NAT1
 I1=I+1
 ICO=ICOD(I)
 IF(JBO(I).EQ.4)THEN
 D(I1,ICO)=1./1.5
 ELSE
 D(I1,ICO)=1./FLOAT(JBO(I))

FIGURE 1. (continued)
ENDIF
D(ICO, I1)=D(I1, ICO)
A(I1, ICO)=1.
A(ICO, I1)=1.

4 CONTINUE
IF(NSB.EQ.0)GO TO 17
READ(1, 110)(ISB(I, 1), ISB(I, 2), I=1, NSB)
IF(IBO.EQ.1)THEN
DO 7 I=1, NSB
 JBO(I)=1
7 CONTINUE
ELSE
READ(1, 111)(JBO(I), I=1, NSB)
ENDIF
DO 5 I=1, NSB
 I1=ISB(I, 1)
 I2=ISB(I, 2)
 IF(JBO(I).EQ.4)THEN
 D(I1, I2)=1./1.5
 ELSE
 D(I1, I2)=D(I1, I2)
 ENDIF
 D(I2, I1)=D(I1, I2)
 A(I1, I2)=1.
 A(I2, I1)=1.

5 CONTINUE
17 READ(1, 110)(NZ(I), I=1, NAT)
 NB=NAT+NSB-1
 IF(KODER.EQ.1)GO TO 1
ENDIF
CALL DIST(NAT, NB)
CALL SJH(NAT, NB, SF, JX, JY, PDSX, PDSY)
IF(IOUR.EQ.1)THEN
 TYPE 201,(NAME(I), I=1, NO)
 TYPE 202,JX, JY, PDSX, PDSY
 ELSE
 WRITE(2, 203)(NAME(I), I=1,30),JX, JY, PDSX, PDSY
 ENDIF
IF(INTR.EQ.1)THEN
 TYPE 115
 READ(5, 116)ANS
 IF(ANS.EQ.‘Y’)GO TO 1
 IF(ANS.EQ.‘N’)GO TO 999
 GO TO 20
 ELSE
 GO TO 1
 ENDIF
999 CONTINUE
IF(INTR.EQ.2)CLOSE (1)
IF(IOUR.EQ.2)CLOSE (2)
STOP
100 FORMAT(‘*DATA IS SUPPLIED FROM : TERMINAL-1 DATAFILE-2 : ’)
101 FORMAT(I)
102 FORMAT(‘*RESULTS ARE DIRECTED TO : TERMINAL-1 DATAFILE-2 : ’)
121 FORMAT(‘*SCALING FACTOR SF = ’)
122 FORMAT(IO,3.3)
120 FORMAT(3X,’JX’,14X,’JY’,12X,’PDSX’,12X,’PDSY’/)
103 FORMAT(‘*NAME OF THE COMPOUND : ’)

FIGURE 1. (continued)
F04 FORMAT(0,30A1)
F05 FORMAT('NUMBER OF ATOMS : ')
F06 FORMAT(3I2)
F07 FORMAT('NUMBER OF BONDS : ')
F08 FORMAT(' BOND : ',I2,' I , J , IBOND : ')
F09 FORMAT(' ATOM : ',I2,' Z = ')
F10 FORMAT(30I2)
F11 FORMAT(30I1)
F12 FORMAT(3I3)
F13 FORMAT('DO YOU WANT ANOTHER RUN? [Y/N] : ')
F14 FORMAT(A1)
F201 FORMAT(//10X, 'NAME : ',30A1)
F202 FORMAT(5X, 'JX=',F14.6,5X, 'JY=',F14.6/
 15X, 'PSX=',F14.6,5X, 'PSY=',F14.6//)
F203 FORMAT(1X,30A1,4(2X,F14.6))
F220 FORMAT(' WARNING !!! N > 30 !')
END

C ***
C SUBROUTINE DIST(NAT, NB)
C ***

C SUBROUTINE DIST Computes the distance matrix of the
C molecular graph

C DIMENSION A(30,30), D(30,30)
C DIMENSION PA(2,60), NZ(30)
C COMMON A,D,PA,NZ
C DO 51 I=1,NAT
C DO 52 J=1,NAT
C IF(I.EQ.J)GO TO 52
C DO 53 K=1,NAT
C IF(K.EQ.I.OR.K.EQ.J)GO TO 53
C IF(D(I,J).EQ.0..OR.D(K,J).EQ.0.)GO TO 53
C DD=D(I,J)+D(J,K)
C IF(D(I,K).GT.0..AND.DD.GE.D(I,K))GO TO 53
C D(I,K)=DD
C D(K,I)=DD
C 53 CONTINUE
C S2 CONTINUE
C S1 CONTINUE
C RETURN
C END

C ***
C SUBROUTINE SJIH(NAT, NB, SF, JX, JY, PSX, PDSY)
C ***

C SUBROUTINE SJIH Computes topological indices
C JX, JY, PSX and PDSY

C DS(I) : contains the distance sum of atom I
C VTIH(I) : contains the vertex parameter of
C Atom I, based on the relative electronegativity
C VTIH(I) : contains the vertex parameter of
C Atom I, based on the relative covalent radii

FIGURE 1. (continued)
DIMENSION A(30,30), D(30,30)
DIMENSION PA(2,60), NZ(30), DS(30), VTIX(30), VTIY(30)
COMMON A, D, PA, NZ
REAL JX, JY
DO 9 I=1,30
 DS(I)=0.
 DO 10 I=1,NAT
 J=1,NAT
 IF(I.EQ.J) GO TO 10
 DS(I)=DS(I)+D(I,J)
 10 CONTINUE
 JX=0.
 JY=0.
 PDSX=0.
 PDSY=0.
 DO 11 I=1,NAT
 IND=NZ(I)
 IF(IND.EQ.6) THEN
 VTIX(I)=DS(I)*PA(1,IND)
 VTIY(I)=DS(I)*PA(2,IND)
 ELSE
 VTIX(I)=SF*DS(I)*PA(1,IND)
 VTIY(I)=SF*DS(I)*PA(2,IND)
 ENDIF
 11 CONTINUE
 DO 12 I=1,NAT
 PDSX=PDSX+VTIX(I)
 PDSY=PDSY+VTIY(I)
 12 CONTINUE
 IF(A(I,J).EQ.0.) GO TO 12
 JX=JX+1./SQRT(VTIX(I)*VTIX(J))
 JY=JY+1./SQRT(VTIY(I)*VTIY(J))
 12 CONTINUE
 CYCL=FLOAT(NB)/FLOAT(NB-NAT+2)
 JX=JX*CYCL
 JY=JY*CYCL
RETURN
END

FIGURE 1. (continued)
DATA IS SUPPLIED FROM : TERMINAL-1 DATAFILE-2 : I
RESULTS ARE DIRECTED TO : TERMINAL-1 DATAFILE-2 : 2
SCALING FACTOR SF = 1.

NAME OF THE COMPOUND : ISOBUTYLAMINE
NUMBER OF ATOMS : 5
NUMBER OF BONDS : 4

BOND : 1 I , J, IBOND : 1,2,1
BOND : 2 I , J, IBOND : 2,3,1
BOND : 3 I , J, IBOND : 3,4,1
BOND : 4 I , J, IBOND : 3,5,1

ATOM : 1 Z = 7
ATOM : 2 Z = 6
ATOM : 3 Z = 6
ATOM : 4 Z = 6
ATOM : 5 Z = 6

NAME : ISOBUTYLAMINE

JX= 2.503020
JY= 2.549897
PDSX= 37.341003
PDSY= 35.667000

DO YOU WANT ANOTHER RUN? [Y/N] : N

FIGURE 2. Output data of program JHET with input data supplied from the terminal.

BUTYLAMINE
5 0 1
1 2 3 4
7 6 6 6 6
sec-BUTYLAMINE
5 0 1
1 2 3 2
7 6 6 6 6
ISOBUTYLAMINE
5 0 1
1 2 3 3
7 6 6 6 6
tert-BUTYLAMINE
5 0 1
1 2 2 2
7 6 6 6 6
N-METHYLPROPYLAMINE
5 0 1
1 2 3 4
6 7 6 6 6
DIETHYLAMINE
5 0 1
1 2 3 4
6 7 6 6 6
N-METHYLISOPROPYLAMINE
5 0 1
1 2 3 3
6 7 6 6 6
N,N-DIMETHYLETHYLAMINE
5 0 1
1 2 3 3
6 7 6 6 6
TETRAMETHYLAMMONIUM
5 0 1
1 2 2 2
6 7 6 6 6

FIGURE 3. File JHIN.DAT used as input data for program in a work-session using datafiles.
<table>
<thead>
<tr>
<th>NAME</th>
<th>JX</th>
<th>JY</th>
<th>PDSX</th>
<th>PDSY</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYLAMINE</td>
<td>2.158535</td>
<td>2.199708</td>
<td>41.490002</td>
<td>39.630001</td>
</tr>
<tr>
<td>sec-BUTYLAMINE</td>
<td>2.497108</td>
<td>2.551574</td>
<td>37.192001</td>
<td>35.704002</td>
</tr>
<tr>
<td>ISOBUTYLAMINE</td>
<td>2.503020</td>
<td>2.549897</td>
<td>37.341003</td>
<td>35.667000</td>
</tr>
<tr>
<td>tert-BUTYLAMINE</td>
<td>2.973001</td>
<td>3.038101</td>
<td>33.043003</td>
<td>31.741001</td>
</tr>
<tr>
<td>N-METHYLPROPYLAMINE</td>
<td>2.117126</td>
<td>2.211453</td>
<td>41.043003</td>
<td>39.741001</td>
</tr>
<tr>
<td>DIETHYLAMINE</td>
<td>2.107793</td>
<td>2.214101</td>
<td>40.894001</td>
<td>39.778000</td>
</tr>
<tr>
<td>N-METHYLISOPROPYLAMINE</td>
<td>2.454025</td>
<td>2.563795</td>
<td>36.894001</td>
<td>35.778000</td>
</tr>
<tr>
<td>N,N-DIMETHYLETHYLAMINE</td>
<td>2.405682</td>
<td>2.577507</td>
<td>36.745003</td>
<td>35.815002</td>
</tr>
<tr>
<td>TETRAMETHYLANHYDROXIDE</td>
<td>2.820856</td>
<td>3.081257</td>
<td>32.596001</td>
<td>31.852001</td>
</tr>
</tbody>
</table>

FIGURE 4. File JHOUT.DAT containing output data of the program JHET in a work-session using datafiles.
REFERENCES