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Topological Indices

Ovidiu Ivanciuc

1.1

Introduction

The structure of organic compounds is represented in a numerical form with a

large variety of structural descriptors. Among these, those computed from the

molecular graph are widely used in modeling physical, chemical, or biological

properties. By removing all hydrogen atoms from the structure diagram of a com-

pound containing covalent bonds one obtains the hydrogen-depleted (or hydrogen-

suppressed) molecular graph of that compound, whose vertices correspond to non-

hydrogen atoms and whose edges correspond to covalent bonds [1–5]. These

chemical graphs can be represented in algebraic form as molecular matrixes. This

numerical description of the structure of chemical compounds is the basis for the

computation of various polynomials, spectra, spectral moments, other structural

descriptors, and topological indices. Topological indices (TI) are a convenient

method for expressing in a numerical form the chemical structure encoded in

molecular graphs. The topological description of a molecule contains information

on the atom–atom connectivity in the molecule, and encodes the size, shape,

branching, heteroatoms and the presence of multiple bonds [6–13]. This graph

description of molecules neglects information on bond lengths, bond angles, and

torsion angles, but is able to encode in a numerical form the important atom con-

nectivity information that determine a wide range of physical, chemical, and bio-

logical properties. Topological indices are widely used as structural descriptors in

quantitative structure–property relationships (QSPR) and quantitative structure–

activity relationships (QSAR) models. Recent applications of structural descriptors

derived from the molecular graph have been made in the design of chemical

libraries, in virtual screening of combinatorial libraries, and in large-scale evalua-

tion of the molecular similarity and diversity of chemical databases. In the above

chemical database generation and mining applications the molecular structure is

translated into a numerical form with the aid of various structural descriptors

derived from the molecular graph, many of them traditionally used in QSPR and

QSAR. To be efficient, the in silico compound screening uses descriptors that

require small computational resources, such as counts of atom types, counts of
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functional groups, fingerprints, constitutional descriptors, graph invariants and

topological indices. In this section we present an overview of the main topological

indices used in QSPR, QSAR, and virtual screening of chemical libraries. The

theory of topological indices uses notions of graph theory, molecular matrixes,

vertex- and edge-weighted (VEW) molecular graphs [14, 15] that represent mole-

cules containing heteroatoms and double bonds, all presented in the section on

graph theory (Chapter II, Section 4).

1.2

Topological Indices

1.2.1

The Wiener Index and Related Topological Indices

The Wiener index W, defined in 1947, is widely used in QSPR and QSAR models,

and it still represents an important source of inspiration for defining new topolog-

ical indices. Initially, its definition was not formulated with graph concepts [16]:

‘‘The path number W is defined as the sum of the distances between any two car-

bon atoms in the molecule, in terms of carbon–carbon bonds. Brief method of

calculation: Multiply the number of carbon atoms on one side of any bond by those

on the other side; W is the sum of those values for all bonds’’. This definition can

be applied only to acyclic compounds, and Wiener used it to compute W only for

alkanes. We present a translation of this definition into graph terms. Consider an

acyclic graph G and denote with Ni and Nj the number of vertices situated on both

sides of the edge eij. The vertex vi is added to Ni while vertex vj is added to Nj. For

acyclic graphs the Wiener index WðGÞ of a graph G is (Eq. (1)):

WðGÞ ¼
X

eij AEðGÞ
NiNj ð1Þ

where the summation goes over all edges from the edge set EðGÞ, eij A EðGÞ.
Hosoya extended the application of the Wiener index by defining it from the

distance matrix as ‘‘the half sum of the off-diagonal elements of a distance matrix

D whose element dij is the number of bonds for the shortest path between atoms i
and j’’ [17] (Eq. (2)):

WðGÞ ¼ 1

2

XN
i¼1

XN
j¼1
j0i

½DðGÞ�ij ð2Þ

Because the formula proposed by Hosoya in Eq. (2) does not consider vertex- and

edge-weighted molecular graphs, the current definition of the Wiener index uses a

slightly modified equation [15] (Eq. (3)):

Wðw;GÞ ¼
XN
i¼1

XN
j¼i

½Dðw;GÞ�ij ð3Þ

1 Topological Indices982



where the graph G has N vertices and the distance matrix is computed with the

weighting scheme w.
The success of the Wiener index in QSPR and QSAR models encouraged the

development of several related topological indices. The quasi-Wiener index

W � ¼ W �ðGÞ of a graph G with N vertices is computed from the spectrum of the

Laplacian matrix LðGÞ [18] (Eq. (4)):

W �ðGÞ ¼ N
XN�1

i¼1

1

SpðL;GÞi
ð4Þ

where SpðLÞi, i ¼ 1; 2; 3; . . . ;N � 1 denote the positive eigenvalues of the Lap-

lacian matrix (in the Laplacian matrix SpðLÞN ¼ 0). For acyclic molecular graphs

(trees), W � is identical with the Wiener index W, W �ðGÞ ¼ WðGÞ, while for cycle-

containing graphs the two indices are different.

The resistance distance matrix W was used to define a Wiener-type topological

index, the Kirchhoff index Kf ¼ Kf ðGÞ [19] (Eq. (5)):

Kf ðGÞ ¼
XN
i¼1

XN
j¼i

½WðGÞ�ij ð5Þ

For acyclic graphs the Wiener index W and the Kirchhoff index Kf coincide, but
their values are different for cyclic graphs. Gutman and Mohar demonstrated that

for any graph W �ðGÞ ¼ Kf ðGÞ [20].
The reciprocal distance matrix RD is the source of another Wiener-like topologi-

cal index, RDSUM [21] (Eq. (6)):

RDSUMðGÞ ¼
XN
i¼1

XN
j¼i

½RDðGÞ�ij ð6Þ

A TI related to W is the hyper-Wiener index WW [22, 23] (Eq. (7)):

WWðGÞ ¼ 1

2

X
i<j

ð½DðGÞ�ij
2 þ ½DðGÞ�ijÞ ¼

XN
i¼1

XN
j¼i

½DpðGÞ�ij ð7Þ

where Dp is the distance-path matrix defined by Diudea.

1.2.2

The Szeged Index

Gutman gave the following definition for the Szeged index of a simple, non-

weighted molecular graph. Let eij be an edge of the molecular graph G, connecting

the vertices vi and vj from G, vi; vj A VðGÞ and denote with tdij the topological

distance between vertices vi and vj representing the minimum number of bonds
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between vertices vi and vj. Let ni be the number of vertices vk of the molecular

graph G, having the property tdki < tdkj and let nj be the number of vertices vk of

the molecular graph G, having the property tdkj < tdki. When a vertex vk is situated
at the same topological distance from vertices vi and vj, i.e. tdki ¼ tdkj, the vertex is

not counted neither in ni nor in nj. For the two vertices that form the edge eij,
ni gives the number of vertices closer to vertex vi and nj gives the number of

vertices closer to vertex vj. A formal definition of ni and nj is offered below (Eqs. (8)

and (9)):

ni ¼ jfvk : vi; vj; vk A VðGÞ; eij A EðGÞ; tdki < tdkjgj ð8Þ

nj ¼ jfvk : vi; vj; vk A VðGÞ; eij A EðGÞ; tdkj < tdkigj ð9Þ

The Szeged index of the molecular graph G is (Eq. (10)):

SzðGÞ ¼
X

eij AEðGÞ
ninj ð10Þ

where the summation goes over all edges eij from the edge set EðGÞ, eij A EðGÞ. In
acyclic graphs Ni ¼ ni and Nj ¼ nj and the Wiener and Szeged indices coincide.

Wiener-type topological indices can be computed from any symmetric molecular

matrix, using formulas similar to Eq. (3). Such topological indices were derived

from a large number of molecular matrixes: edge Szeged Sze [26], detour D [27],

distance-valency Dval [28], electrical conductance EC [29], distance complement

DC [30], complementary distance CD [31], and reverse Wiener RW [32] matrixes.

1.2.3

The Connectivity Indices

The highly successful Randić connectivity index w [33] was extended by Kier and

Hall for connected subgraphs [6, 9] (Eq. (11)):

mwvt ¼
Xs

j¼1

Yn
i¼1

ðdvi Þ
�1=2 ð11Þ

where s is the number of connected subgraphs of type t with m edges, n is the

number of vertices of the subgraph, and dvj is the valence atomic connectivity

computed with the formula (Eq. (12)):

dvi ¼ Z v
i �Hi

Zi � Z v
i � 1

ð12Þ

where Z v
i is the number of valence electrons of atom i, Zi is the count of all elec-

trons of atom i, and Hi is the number of hydrogen atoms attached to this atom.
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1.2.4

The Electrotopological State

The electrotopological state indices are local (atomic) invariants that encode, for

each atom in a molecule, information about the topological environment and the

electronic interactions due to all other atoms in the molecule. Each vertex vi from a

graph G with N vertices, representing the atom i from the corresponding organic

compound, is assigned an intrinsic state value Ii [11] (Eq. (13)):

Ii ¼
ð2=QiÞ2ðZ v

i �HiÞ þ 1

degi
ð13Þ

where Qi is the principal quantum number for the valence shell of atom i, Z v
i is

the number of valence electrons of atom i, Hi is the number of hydrogen atoms

attached to this atom, and degi is the degree of atom i.
The second contribution to the electrotopological state index comes from the

interactions between an atom i and all other atoms in the molecular graph.

The perturbation on the intrinsic state value I of atom i, due to the presence of the

remaining atoms in the molecule, is a function of the difference between the

corresponding intrinsic state values and decreases when the interatomic distance

increases [11] (Eq. (14)):

DIi ¼
XN�1

i¼1

XN
j¼iþ1

Ii � Ij

ðtdij þ 1Þ2
ð14Þ

where tdij is the topological distance between atoms i and j, equal to the minimum

topological length of the paths connecting the two atoms, i.e. the minimum num-

ber of bonds between atoms i and j. The electrotopological state index S of atom i
is an atomic invariant [11] (Eq. (15)):

Si ¼ Ii þ DIi ð15Þ

The atomic indices S corresponding to an atom type j are summed together to

give Sð jÞ. The atom type indices Sð jÞ are used as structural descriptors in QSPR

and QSAR models.

1.2.5

The Hosoya Index

The Hosoya index Z ¼ ZðGÞ of a graph Gwith N vertices is given by [17] (Eq. (16)):

ZðGÞ ¼
XL

k¼0

mðG; kÞ ¼
XL

k¼0

ja2kj ð16Þ

1.2 Topological Indices 985



where mðG; kÞ is the number of k-matchings of G, i.e. the number of selections of

k mutually non-adjacent edges in G, L ¼ ½N=2� is the smallest integer not exceed-

ing N=2, and ak is the kth coefficient of the acyclic (matching) polynomial.

1.2.6

The Balaban Index J

The average distance sum connectivity index J of the molecular graph G is defined

by the formula [34–36] (Eq. (17)):

J ¼ M

mþ 1

X
EðGÞ

ðsiDSisjDSjÞ�1=2 ð17Þ

where DSi and DSj denote the distance sums of the vertices vi and vj of an edge eij
in the molecular graph G, M is the number of edges in the molecular graph, m is

the cyclomatic number, si is the weight of the vertex vi, sj is the weight of the vertex
vj, and the summation goes over all edges in the molecular graph, EðGÞ. The vertex
weights are computed from the electronegativity and covalent radii, respectively, of

the corresponding atom [36]. The distance sum of the vertex vi, DSi, is defined as

the sum of the topological distances between the vertex vi and every vertex in the

molecular graph, i.e. the sum over row i or column i in the D matrix (Eq. (18)):

DSi ¼
XN
j¼1

½DðGÞ�ij ¼
XN
j¼1

½DðGÞ�ji ð18Þ

The distance matrix used to compute the Balaban index J is obtained from

an edge-weighted adjacency matrix, which does not consider vertex weights for

heteroatoms. In this adjacency matrix the single, double, triple, and aromatic

bonds have the weights 1, 1/2, 1/3, and 1/1.5, respectively.

1.2.7

The Information-Theory Indices IED, I
E
D, I

W
D , and IWD

Information theory provides a simple quantitative measure of the informa-

tion content of a system. The information content for various partitions of the

molecular graph was numerically characterized with various equations [8]. The

information-theory indices IED and IED, representing the total and mean information

on distances in a molecular graph G with N vertices, are [37] (Eqs. (19) and (20)):

IEDðGÞ ¼ NðN � 1Þ
2

log2
NðN � 1Þ

2
�
Xl

k¼1

dðG; kÞ log2 dðG; kÞ ð19Þ

IEDðGÞ ¼ 2IED
NðN � 1Þ ¼ �

Xl

k¼1

2dðG; kÞ
NðN � 1Þ log2

2dðG; kÞ
NðN � 1Þ ð20Þ
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where dðG; kÞ represents the number of pairs of vertices in G that are separated by

k edges, and l is the largest element of the distance matrix D, or the diameter of G.

The information-theory indices IWD and IWD , representing the total and mean

information on the distribution of the distances in a molecular graph G, are [37]

(Eqs. (21) and (22)):

IWD ðGÞ ¼ W log2 W �
Xl

k¼1

dðG; kÞk log2 k ð21Þ

IWD ðGÞ ¼ IWD
W

¼ �
Xl

k¼1

dðG; kÞ k

W
log2

k

W
ð22Þ

where W represents the Wiener index of the graph G, and l is the diameter of G.

1.2.8

The Information on Distances Indices U, V, X, and Y

By transforming the distances of a vertex into a local structural descriptor, Balaban

proposed new vertex invariants based on distance vectors and information theory

[38, 39]. The operation of global distance summation used in the computation of

the J index is replaced by a more refined approach, leading to local and global

indices with lower degeneracy. On applying Shannon’s formula to the elements

of the distance matrix D that correspond to a vertex vi one obtains the mean local

information on the magnitude of distances (Eq. (23)):

u:infi ¼ �
XN
j¼1
j0i

½D�ij
DSi

log2
½D�ij
DSi

ð23Þ

and the local information on the magnitude of distances (Eq. (24)):

v:infi ¼ DSi log2 DSi � u:infi ð24Þ

where DSi represents the distance sum of the vertex vi.
Two related vertex invariants were proposed, namely the extended local infor-

mation on distance magnitude (Eq. (25)):

x:infi ¼ DSi log2 DSi � y:infi ð25Þ

and the mean extended local information on distance magnitude (Eq. (26)):

y:infi ¼
XN
j¼1
j0i

½D�ij log2½D�ij ð26Þ
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In Eqs (23) and (26) the summation is done for all non-zero elements in the i-th
row of the distance matrix D. By analogy with the Randić connectivity index four

new topological indices were defined [38, 39] on the basis of the four local graph

invariants u:infi , v:infi , x:infi , and y:infi : (Eqs. (27)–(30)):

UðGÞ ¼ M

mþ 1

X
EðGÞ

ðu:infiu:infjÞ�1=2 ð27Þ

VðGÞ ¼ M

mþ 1

X
EðGÞ

ðv:infiv:infjÞ�1=2 ð28Þ

XðGÞ ¼ M

mþ 1

X
EðGÞ

ðx:infix:infjÞ�1=2 ð29Þ

YðGÞ ¼ M

mþ 1

X
EðGÞ

ðy:infi y:infjÞ�1=2 ð30Þ

where M is the number of edges in G, m is the cyclomatic number of G, and the

summation goes over all edges from the edge set EðGÞ.

1.2.9

Triplet Topological Indices T.P.R

A new class of vertex structural descriptors was defined as the solution of the

following system of equations [40] (Eq. (31)):

Q � S ¼ R ð31Þ

where Q is a matrix derived from a molecular graph matrix, R is a column vector,

and S is the column vector of LOcal Vertex Invariants (LOVIs). The matrix Q is

obtained from a graph topological matrix T, by replacing its diagonal elements [T]ii
with the components Pi of a nonzero column vector P representing a vertex prop-

erty. The vertex property encoded in the column vectors P and R can be either

topological (the vertex degrees, distance sum, or reciprocal distance sum) or

chemical (the atomic number Z, the atomic mass A, electronegativity, polar-

izability, ionization potential). The system of equations and the type of LOVIs

obtained is denoted by a three-element notation T.P.R, where T denotes the

molecular matrix, P is the vertex property that replaces the main diagonal of the

matrix T, and R is the descriptor used as free term. For example, the LOVIs

obtained using the adjacency matrix A, the electronegativity E as the property P,

and the distance sum DS as property R, is denoted by A.E.DS. Analytical formulas

for the T.P.R invariants for certain classes of graphs were obtained [41]. The solu-

tion of the T.P.R system of equations is a vector of vertex descriptors that are com-

bined together into a molecular descriptor. The most simple operation is the sum

of the vertex invariants, denoted Sum(T.P.R).
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1.3

Computing Topological Indices with Graph Operators

An inspection of the large number of topological indices defined in the literature

shows that many of them are computed with identical mathematical equations, by

using different molecular matrices. For example, two recent reviews [42, 43] dedi-

cated to the topological indices related to the Wiener index show that all Wiener-

type indices are computed with an identical formula, Eq. (3), applied to different

matrices: the distance matrix D gives the Wiener index W, the reciprocal distance

matrix RD gives the RDSUM index, the distance-path matrix Dp gives the hyper-

Wiener index WW, the resistance distance matrix W gives the Kirchhoff index Kf,
the edge Szeged matrix Sze gives the Szeged index Sz, and the path matrix Szeged

Szp gives the hyper-Szeged index. The name of all these indices does not give any

indication about their common mathematical formula. Also, each of the above

topological indices can be computed with several vertex and edge weighting

schemes, but there is no clear way of indicating this in the symbol of the indices.

The development of new molecular matrices can multiply the number of topologi-

cal indices that can be computed with a mathematical formula identical with that

used for the Wiener index. The problem of denoting in a simple and unique way

such related structural descriptors can be solved by using operators representing a

certain mathematical operation or algorithm. An operator defines the mathemati-

cal operations performed on a certain molecular matrix or on a graph invariant,

together with various parameters and the weighting scheme used to compute a

topological index [43, 44]. Therefore, a graph operator is as a simple and flexible

notation system that collects together a family of topological indices that are com-

puted with an identical mathematical formula. In this section we review the most

important graph operators.

1.3.1

The Vertex Sum Operator

Many topological indices and graph descriptors are defined with the aid of vertex

invariants. An operator that computes vertex invariants from molecular matrices is

the vertex sum VS. Consider the vertex vi from the graph G with N vertices and the

symmetric graph matrix MðwÞ ¼ Mðw;GÞ, where w is the weighting scheme used

to compute the vertex and edge parameters. The vertex sum of the vertex vi,
VSðM;wÞI ¼ VSðM;w;GÞi, is defined as the sum of the elements in the column i,
or row i, of the molecular matrix M (Eq. (32)):

VSðM;w;GÞi ¼
XN
j¼1

½Mðw;GÞ�ij ¼
XN
j¼1

½Mðw;GÞ�ji ð32Þ

The VS operator is identical to the degree vector Deg if M is the adjacency matrix

A, to the distance sum DS if M is the distance matrix D, and to the reciprocal dis-
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tance sum RDS if M is the reciprocal distance matrix RD. This vertex invariant was

used to define the Ivanciuc–Balaban operator [45].

1.3.2

The Connectivity Chi Operator

The Chi operator was derived from the Kier and Hall connectivity indices [6, 9]

by replacing the local invariant dV with any other vertex invariant. Consider a

vertex structural descriptor VSDðM;wÞ ¼ VSDðM;w;GÞ that assigns a numerical

invariant VSDðM;wÞi to each vertex vi from the VEW molecular graph G. The

connectivity Chi operator ChiðVSD;M;wÞ ¼ ChiðVSD;M;w;GÞ of the graph G is

[44] (Eq. (33)):

mChiðVSD;M;w;GÞt ¼
Xs

i¼1

Yn
j¼1

ðVSDðM;w;GÞjÞ
�1=2 ð33Þ

where s is the number of connected subgraphs of type t with m edges, n is the

number of vertices of the subgraph, and w is the weighting scheme. For hydro-

carbons and when VSD is the degree, the Chi operator gives the Kier and Hall

connectivity indices.

1.3.3

The Wiener Operator

Consider the VEW molecular graph G with N vertices and its symmetric molecular

matrix MðwÞ ¼ Mðw;GÞ computed with the weighting scheme w. The Wiener

operator WiðM;wÞ ¼ WiðM;w;GÞ is [15, 46] (Eq. (34)):

WiðM;w;GÞ ¼
XN
i¼1

XN
j¼i

½Mðw;GÞ�ij ð34Þ

1.3.4

The Hyper-Wiener Operator

The extension of the hyper-Wiener index WW [22, 23] to other molecular ma-

trices was done with the hyper-Wiener operator HyWi that can be computed

both for simple and weighted molecular graphs. Consider the vertex- and edge-

weighted graph G with N vertices and its molecular matrix MðwÞ ¼ Mðw;GÞ com-

puted with the weighting scheme w. The hyper-Wiener operator HyWiðM;wÞ ¼
HyWiðM;w;GÞ of the VEW graph G is [28] (Eq. (35)):

HyWiðM;w;GÞ ¼ 1

2

XN
i¼1

XN
j¼i

ð½Mðw;GÞ�ij
2 þ ½Mðw;GÞ�ijÞ ð35Þ
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The hyper-Wiener operator can be applied to any symmetric molecular matrix,

such as the adjacency, distance, reciprocal distance, resistance distance, detour, and

distance-valency matrixes. If M is the distance matrix, the HyWi operator is iden-

tical with the hyper-Wiener index WW.

1.3.5

The Szeged Operator

In computing the Szeged index, the contribution of a vertex to the numbers ni and

nj is constant and equal to 1, as can be seen from Eqs. (8) and (9). The Szeged

operator considers vertex contributions by applying a function to a subset of

vertices from the molecular graph, when each vertex is characterized by a local

invariant, such as the degree or distance sum. Consider a vertex structural

descriptor VSD that assigns a numerical value VSDi to each vertex vi from the

molecular graph G. Let eij be an edge of the molecular graph G, connecting the

vertices vi and vj from G, vi; vj A VðGÞ. Let si be the value of the function

f ¼ f ðVSDkÞ computed from the VSDk values for all vertices vk of the graph G
having the property tdki < tdkj and let sj be the value of the function f ¼ f ðVSDkÞ
computed from the VSDk values for all vertices vk of the graph G having the prop-

erty tdkj < tdki. When a vertex vk is situated at the same distance from vertices vi
and vj, i.e. tdki ¼ dkj, its VSDk value is not considered neither in si nor in sj. A for-

mal definition of si and sj is offered below (Eqs. (36) and (37)):

si ¼ f f ðVSDk; pÞ : vi; vj; vk A VðGÞ; eij A EðGÞ; tdki < tdkjg ð36Þ

sj ¼ f f ðVSDk; pÞ : vi; vj; vk A VðGÞ; eij A EðGÞ; tdkj < tdkig ð37Þ

The Szeged operator of the molecular graph G is defined by the equation [47]

(Eq. (38)):

SzðVSD; f ; p;GÞ ¼
X

eij AEðGÞ
sisj ð38Þ

where the summation goes over all edges eij from the edge set EðGÞ, eij A EðGÞ,
and p is the constant power used in the function f . When the VSDi is equal to 1

for all vertices in the graph G, the Szeged operator is identical to the Szeged index

Sz. The vertex structural descriptor VSD that weights the contribution of each

vertex to the numbers si and sj can be the degree deg, valency val, distance sum

DS, vertex sum VS, or any other vertex descriptor. The following three functions

are used to compute the si and sj vertex descriptors from Eqs (36) and (37) (Eqs.

(39)–(41)):

f1ðVSD; pÞi ¼
X

tdki<tdkj

½VSDk�p ð39Þ
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f2ðVSD; pÞi ¼
X

tdki<tdkj

VSDk

1þ tdki

� �p
ð40Þ

f3ðVSD; pÞi ¼
X

tdki<tdkj

VSDk

ð1þ tdkiÞ2

" #p

ð41Þ

In the above three equations the summation goes over all vertices vk with the

property tdki < tdkj. The Szeged operator Szð1; f1; 1Þ, i.e. when the function f1 with
p ¼ 1 uses a contribution equal to 1 for each vertex, is identical with the Szeged

index Sz.

1.3.6

The Characteristic Polynomial Operator

The characteristic polynomial operator ChðM;w;G; xÞ represents the characteristic

polynomial of the matrix MðwÞ ¼ Mðw;GÞ computed with the weighting scheme w
for a molecular graph G with N vertices [46] (Eq. (42)):

ChðM;w;G; xÞ ¼ detðxI�Mðw;GÞÞ ¼
XN
n¼0

cnx
N�n ð42Þ

where I is the unit matrix of order N, and cn is the n-th coefficient of the charac-

teristic polynomial. When M is the adjacency matrix A the characteristic poly-

nomial can be denoted Chðw;GÞ.

1.3.7

The Matrix Spectrum Operators

Consider the VEW graph G with N vertices and its molecular matrix MðwÞ ¼
Mðw;GÞ computed with the weighting scheme w. The matrix spectrum oper-

ator SpðM;w;GÞ ¼ fxi; i ¼ 1; 2; . . . ;Ng represents the eigenvalues of the matrix

MðwÞ or the roots of the polynomial ChðM;w;G; xÞ, ChðM;w;G; xÞ ¼ 0. The

MinSpðM;w;GÞ and MaxSpðM;w;GÞ operators are equal to the minimum and

maximum values of SpðM;w;GÞ, respectively [44] (Eqs. (43) and (44)):

MinSpðM;w;GÞ ¼ minfSpðM;w;GÞg ð43Þ

MaxSpðM;w;GÞ ¼ maxfSpðM;w;GÞg ð44Þ

Lovász and Pelikán demonstrated that the largest eigenvalue (spectral radius)

MaxSpðA;GÞ of the adjacency matrix of the graph G reflects the graph branching

[48]. Their work had a considerable significance in measuring the structure

and branching of molecular graphs, and encouraged Burden to use the smallest

eigenvalues of the Burden matrix B as a numerical measure of molecular com-

plexity [49]. In the original definition, the diagonal elements of the Burden matrix

B were the atomic number Z of the atoms from the molecular graph. Pearlman
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considered that the atomic number is not relevant for intermolecular interactions,

and proposed four modified B matrices by putting other atomic properties on

the diagonal, namely atomic charges, polarizabilities, hydrogen-bond donor- and

acceptor-abilities, corresponding to the electrostatic, dispersion, and hydrogen-

bonding modes of biomolecular interaction [50]. Using the modified B matrices,

Pearlman defined the BCUT set of topological indices, representing the lowest and

highest eigenvalues of a Burden molecular matrix; based on Burden’s (B) modified

adjacency matrix validated by the Chemical Abstracts Service (C) as a similarity

searching method and extended by Pearlman at the University of Texas (UT), the

BCUT descriptors are used in combinatorial chemistry, virtual screening, diversity

measure, and QSAR models [50, 51]. The MinSpðM;w;GÞ and MaxSpðM;w;GÞ
operators are therefore a generalization of the Lovász and Pelikán index and BCUT

descriptors.

The spectral diameter of the molecular matrix MðwÞ is equal to the difference

between the maximum and minimum eigenvalue of M [44] (Eq. (45)):

SpDiamðM;w;GÞ ¼ MaxSpðM;w;GÞ �MinSpðM;w;GÞ ð45Þ

The sum of the values of the spectrum SpðM;w;GÞ is [44] (Eq. (46)):

SpSumðp;M;w;GÞ ¼
XN
i¼1

jSpðM;w;GÞij
p ð46Þ

where p is a parameter, and w is the weighting scheme used to compute the matrix

MðwÞ. The sum of the positive values of the spectrum SpðM;wÞ is [44] (Eq. (47)):

SpSumðþ; p;M;w;GÞ ¼
X
i

jSpðþ;M;w;GÞij
p ð47Þ

where Spðþ;M;w;GÞi is the Ith positive value in the spectrum of the molecular

matrix Mðw;GÞ. The sum of the negative values of the spectrum SpðM;wÞ is [44]

(Eq. (48)):

SpSumð�; p;M;w;GÞ ¼
X
i

jSpð�;M;w;GÞij
p ð48Þ

where Spð�;M;w;GÞi is the ith negative value in the spectrum of the molecular

matrix Mðw;GÞ.

1.3.8

The Spectral Moment Operator

The spectral moment operator of order k, SMðM;w;GÞk, of the matrix MðwÞ ¼
Mðw;GÞ computed with the weighting scheme w for the molecular graph G with N
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vertices is defined as [46] (Eq. (49)):

SMðM;w;GÞk ¼
XN
i¼1

xk
i ¼ Tr Mðw;GÞk ¼

XN
i¼1

½Mðw;GÞk�ii ð49Þ

where xi is the Ith matrix eigenvalue (or spectrum element), and Tr MðwÞk is the

trace of the kth power of the molecular matrix MðwÞ.

1.3.9

The Hosoya Operator

Let MðwÞ ¼ Mðw;GÞ be the molecular matrix computed with the weighting

scheme w of a VEW graph G with N vertices. The Hosoya operator HoðM;wÞ ¼
HoðM;w;GÞ is defined as the sum of the absolute values for the coefficients cn of

the characteristic polynomial of the matrix M [46] (Eq. (50)):

HoðM;w;GÞ ¼
XN
n¼0

jcnj ð50Þ

For acyclic graphs and if M is the adjacency matrix A, the HoðM;wÞ index is

identical to the Hosoya index ZðwÞ computed with the same weighting scheme w.
Also, if M is the distance matrix D, the Hosoya operator gives the Z 0 index,

HoðD;wÞ ¼ Z 0ðwÞ.

1.3.10

The Ivanciuc–Balaban Operator

The Balaban index J [34–36], initially defined with the distance sum DS, was

extended for the VS local invariant. Consider the VEW graph G with N vertices and

its molecular matrix MðwÞ ¼ Mðw;GÞ computed with the weighting scheme w.
The Ivanciuc–Balaban operator IBðM;wÞ ¼ IBðM;w;GÞ of the matrix M is [45]

(Eq. (51)):

IBðM;w;GÞ ¼ M

mþ 1

X
EðGÞ

½VSðM;w;GÞiVSðM;w;GÞj�
�1=2 ð51Þ

where M is the number of edges in G, m is the cyclomatic number of G (the num-

ber of cycles in G), and the summation goes over all edges from the edge set EðGÞ.
The IB operator was recently extended by adding a new parameter, a variable

exponent p, which is optimized according to the investigated physical, chemical or

biological property [52] (Eq. (52)):

IBðM;w;GÞ ¼ M

mþ 1

X
EðGÞ

½VSðM;w;GÞiVSðM;w;GÞj�
p ð52Þ
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Several QSPR studies indicate that for certain properties, the optimum value of

the exponent p is very different from its usual value of �1=2.

1.3.11

The Information-theory Operators U(M), V(M), X(M), and Y(M)

The indices U, V, X, and Y for information on distances are computed from the

elements of the distance matrix of the molecular graph, and these TIs provided

good results both for structure discrimination and in structure–property models

[38, 39]. We present here information-theory operators that can be applied to any

molecular matrix. The graph vertex operators VUinf ðM;w;GÞ, VVinf ðM;w;GÞ,
VXinf ðM;w;GÞ, and VYinf ðM;w;GÞ apply the information theory equations to the

absolute values of the elements of the molecular matrix Mðw;GÞ. With certain

weighting schemes w, the vertex and edge parameters Vw and Ew can have nega-

tive values. Because the logarithm is defined only for positive arguments, the four

graph vertex operators are computed from the elements of a positive matrix

PðwÞ ¼ Pðw;GÞ whose element ½PðwÞ�ij is equal to the absolute value of the corre-

sponding element from the MðwÞ matrix, element ½PðwÞ�ij ¼ j½MðwÞ�ijj. The graph

vertex operators are defined by Eqs. (53)–(55):

VUinf ðM;w;GÞi ¼ �
XN
j¼1

½PðwÞ�ij
VSðP;wÞi

log2
½PðwÞ�ij
VSðP;wÞi

ð53Þ

VVinf ðM;w;GÞi ¼ VSðP;wÞi log2 VSðP;wÞi � VUinf ðM;wÞi ð54Þ

VXinf ðM;w;GÞi ¼ VSðP;wÞi log2 VSðP;wÞi � VYinf ðM;wÞi ð55Þ

VYinf ðM;w;GÞi ¼
XN
j¼1

½PðwÞ�ij log2½PðwÞ�ij ð56Þ

where VSðP;wÞi is the vertex sum of the vertex vi computed from the matrix

P, w is the weighting scheme, and the summations in Eqs. (53) and (56) are done

for the absolute values of the non-zero elements of the molecular matrix P,

½PðwÞ�ij 0 0. For the notation of the four graph vertex operators VUinf ðM;w;GÞ,
VVinf ðM;w;GÞ, VXinf ðM;w;GÞ, and VYinf ðM;w;GÞ we have maintained the

molecular matrix M to indicate the source of the invariants.

For a general molecular graph matrix M, the matrix elements ½M�ij may have

values lower than 1, giving negative terms for certain vertex structural descrip-

tors computed with the graph vertex operators VUinf ðM;w;GÞ, VVinf ðM;w;GÞ,
VXinf ðM;w;GÞ, and VYinf ðM;w;GÞ. The Randić-like formula used in the case of

the indices U, V, X, and Y is therefore replaced by Eq. (57):

f ðx; yÞ ¼ ðxyÞ�1=2 if xy > 0

�ðjxyjÞ�1=2 if xy < 0

(
ð57Þ
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The information on matrix elements operators UðM;wÞ, VðM;wÞ, XðM;wÞ, and
YðM;wÞ are computed with Eqs. (58)–(61):

UðM;w;GÞ ¼ M

mþ 1

X
EðGÞ

f ðVUinf ðM;wÞi;VUinf ðM;wÞjÞ ð58Þ

VðM;w;GÞ ¼ M

mþ 1

X
EðGÞ

f ðVVinf ðM;wÞi;VVinf ðM;wÞjÞ
a11 a12

a21 a22

� �
ð59Þ

XðM;w;GÞ ¼ M

mþ 1

X
EðGÞ

f ðVXinf ðM;wÞi;VXinf ðM;wÞjÞ ð60Þ

YðM;w;GÞ ¼ M

mþ 1

X
EðGÞ

f ðVYinf ðM;wÞi;VYinf ðM;wÞjÞ ð61Þ

1.3.12

Information Theory Indices

Using information theory one can develop effective structural indices by consider-

ing the molecular matrixes and the descriptors derived from them as structures

which can be partitioned into subsets of elements that are equivalent according to

certain rules [37–39, 53–55]. Obviously, the partitioning of a molecular graph into

equivalence classes depends on the particular graph descriptor and the equivalence

rules. Several topological indices were derived using information theory both from

graph matrixes and vertex invariants. The use of some of the information indices is

restricted to alkanes [37], thus greatly limiting their application in QSPR and

QSAR studies. We present here the main equations that are used to measure the

information content of a system S composed a set of n elements. Using a set of

equivalence rules, one establishes a partition P of the n elements into k subsets

n1; n2; . . . ; nk, with the property that n1 þ n2 þ � � � þ nk ¼ n. In the partition P,
denoted with P ¼ nfn1; n2; . . . ; nkg, the equivalence class i contains ni elements

that have a common property according to the equivalence rules. The information

content I ¼ IðSÞ of the partition P of a system S is [56] (Eq. (62)):

I ¼ n log2 n�
Xk

i¼1

ni log2 ni ð62Þ

where the logarithm is taken at basis 2 for measuring the information content in

bits. Using the partition P, one can define a probability distribution pi ¼ ni=n,
representing the probability for a randomly chosen element to belong to class i.
The mean information content H ¼ HðSÞ of the partition P of a system S is [56]

(Eq. (63)):

H ¼ �
Xk

i¼1

pi log2 pi ð63Þ

1 Topological Indices996



This formula is known as the Shannon equation. Onicescu defined the infor-

mation energy content E ¼ EðSÞ of the partition P of a system S [57] (Eq. (64)):

E ¼
Xk

i¼1

p2i ð64Þ

Using the above three equations, we present here several information theory

operators that can generate structural descriptors from a large variety of equiva-

lence classes derived from molecular matrixes.

1.3.13

Information Theory Operators Derived from the Equality of Matrix Elements

Consider the VEW graph G with N vertices and its symmetric molecular matrix

MðwÞ ¼ Mðw;GÞ computed with the weighting scheme w. Since the matrix M is

symmetric, we consider only the elements from the upper-triangle part of the

matrix and from the main diagonal, a total of NðN þ 1Þ=2 elements. The elements

of the matrix M are partitioned in k classes by placing in class i all ai elements

with identical values. The partition P1, P1 ¼ NðN þ 1Þ=2fa1; a2; . . . ; akg, is used to

define three information theory operators. These operators can be applied to dense

symmetric molecular matrixes, i.e. matrixes with non-diagonal elements different

from zero. For some weighting schemes the vertex weight for a carbon atom is

zero; in such cases, all diagonal zero values are collected together into an equiva-

lence class.

The total information content derived from the equality of the elements of the

matrix MðwÞ is [44] (Eq. (65)):

TICðe;M;wÞ ¼ NðN þ 1Þ
2

log2
NðN þ 1Þ

2
�
Xk

i¼1

ai log2 ai ð65Þ

The mean information content computed from the equality of the elements of

the matrix MðwÞ is [44] (Eq. (66)):

MICðe;M;wÞ ¼ 2TICðe;M;wÞ
NðN þ 1Þ ¼ �

Xk

i¼1

2ai
NðN þ 1Þ log2

2ai
NðN þ 1Þ ð66Þ

The information energy content obtained from the equality of the elements of

the matrix MðwÞ is [44] (Eq. (67)):

Eðe;M;wÞ ¼
Xk

i¼1

2ai
NðN þ 1Þ

� �2

ð67Þ

1.3 Computing Topological Indices with Graph Operators 997



Using a different partition, similar operators can be defined for sparse matrixes,

i.e. matrixes that have some zero non-diagonal elements, for example the ad-

jacency matrix. The elements of the matrix M are partitioned in k classes by plac-

ing in class i all bi elements with identical values; all zero non-diagonal elements

are ignored. The total number of elements of the partition is b ¼ b1 þ b2 þ � � � þ
bk. As explained above, some diagonal elements representing carbon atoms can

be zero for certain weighting schemes; in such cases, an equivalence class is

formed by collecting there all diagonal zero values. The partition P2, P2 ¼
bfb1; b2; . . . ; bkg, is used to define the total information content derived from the

equality of the elements of the matrix MðwÞ [44] (Eq. (68)):

TICðe;M;wÞ ¼ b log2 b �
Xk

i¼1

bi log2 bi ð68Þ

The mean information content computed from the equality of the elements of

the matrix MðwÞ is [44] (Eq. (69)):

MICðe;M;wÞ ¼ TICðe;M;wÞ
b

¼ �
Xk

i¼1

bi
b

log2
bi
b

ð69Þ

The information energy content obtained from the equality of the elements of

the matrix MðwÞ is [44] (Eq. (70)):

Eðe;M;wÞ ¼
Xk

i¼1

bi
b

� �2

ð70Þ

1.3.14

Information Theory Operators Derived from the Size of Matrix Elements

The size of the distance matrix elements was used to define two information

indices for alkanes [37]. We present here three graph operators that can derive

such indices for any symmetric molecular matrix. Consider the VEW graph G with

N vertices and its symmetric molecular matrix MðwÞ ¼ Mðw;GÞ computed with

the weighting scheme w, and denote with m the number of non-zero matrix ele-

ments situated on its upper-triangle part and from its main diagonal. For some

weighting schemes, certain vertex and edge weights have negative values, and in

such cases some elements of the matrix M have negative values. Because for neg-

ative numbers the logarithm is not defined, we introduce the absolute matrix M,

denoted AM, whose elements are the absolute values of the corresponding ele-

ments in the matrix M, ½AMðwÞ�ij ¼ j½MðwÞ�ijj. The sum of these m matrix ele-

ments is the Wiener index of the matrix AM, WiðAM;wÞ. The non-zero elements

from the matrix AM form a list with m elements. The total information content

computed from the size of the elements of the matrix MðwÞ is [44] (Eq. (71)):
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TICðs;M;wÞ ¼ WiðAM;wÞ log2 WiðAM;wÞ �
Xm
k¼1

AMðwÞk log2 AMðwÞk ð71Þ

where AMðwÞk represents the kth element from the list ofm non-zero AM elements.

The mean information content obtained from the size of the elements of the

matrix MðwÞ is [44] (Eq. (72)):

MICðs;M;wÞ ¼ TICðs;M;wÞ
WiðAM;wÞ ¼ �

Xm
k¼1

AMðwÞk
WiðAM;wÞ log2

AMðwÞk
WiðAM;wÞ ð72Þ

The information energy content derived from the size of the elements of the

matrix MðwÞ is [44] (Eq. (73)):

Eðs;M;wÞ ¼
Xm
k¼1

AMðwÞk
WiðAM;wÞ

� �2

ð73Þ

1.3.15

Information Theory Operators Derived from the Equality of Vertex Invariants

Consider a vertex structural descriptor VSDðM;wÞ ¼ VSDðM;w;GÞ that assigns

a numerical invariant VSDðM;wÞi to each vertex vi from the VEW molecular

graph G with N vertices. The elements of the vector VSD are partitioned into k
classes by placing in the class i all gi elements with identical values, giving a total

number of elements of the partition N ¼ g1 þ g2 þ � � � þ gk. The partition P3, P3 ¼
Nfg1; g2; . . . ; gkg, is used to define the total information content derived from

the equality of the elements of the vertex structural descriptor VSDðM;wÞ [44]

(Eq. (74)):

TICðe;VSD;M;wÞ ¼ N log2 N �
Xk

i¼1

gi log2 gi ð74Þ

The mean information content computed from the equality of the elements of

the vertex structural descriptor VSDðM;wÞ is [44] (Eq. (75)):

MICðe;VSD;M;wÞ ¼ TICðe;VSD;M;wÞ
N

¼ �
Xk

i¼1

gi
N

log2
gi
N

ð75Þ

The information energy content obtained from the equality of the elements of

the vertex structural descriptor VSDðM;wÞ is [44] (Eq. (76)):

Eðe;VSD;M;wÞ ¼
Xk

i¼1

gi
N

� �2
ð76Þ
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1.3.16

Information Theory Operators Derived from the Size of Vertex Invariants

Consider a vertex structural descriptor VSDðM;wÞ ¼ VSDðM;w;GÞ that assigns a

numerical invariant VSDðM;wÞi to each vertex vi from the VEW molecular graph

G with N vertices. As already pointed, for some weighting schemes, certain vertex

and edge weights have negative values. In such cases some elements of the matrix

M have negative values and for certain molecules one can obtain negative values

for a given vertex structural descriptor VSD. Because the logarithm is not defined

for negative numbers, we use the absolute values for the respective VSD invariants.

The sum of the absolute VSD values for all vertices in the molecular graph G is

denoted with SAVSDðM;wÞ [44] (Eq. (77)):

SAVSDðM;wÞ ¼
XN
i¼1

jVSDðM;wÞij ð77Þ

The total information content computed from the size of the elements of the

vertex structural descriptor VSDðM;wÞ is [44] (Eq. (78)):

TICðs;VSD;M;wÞ ¼ SAVSDðM;wÞ log2 SAVSDðM;wÞ

�
XN
i¼1

jVSDðM;wÞij log2jVSDðM;wÞij ð78Þ

The mean information content computed from the size of the elements of the

vertex structural descriptor VSDðM;wÞ is [44] (Eq. (79)):

MICðs;VSD;M;wÞ ¼ �
XN
i¼1

jVSDðM;wÞij
SAVSDðM;wÞ log2

jVSDðM;wÞij
SAVSDðM;wÞ ð79Þ

The information energy content obtained from the size of the elements of the

vertex structural descriptor VSDðM;wÞ is [44] (Eq. (80)):

Eðs;VSD;M;wÞ ¼
XN
i¼1

jVSDðM;wÞij
SAVSDðM;wÞ

� �2

ð80Þ

1.4

Topological Indices for Combinatorial Chemistry

In the drug discovery process combinatorial libraries (CL) and high–throughput

screening (HTS) are efficiently used to identify biologically active molecules more

rapidly than with the conventional approaches. An efficient way to reduce the
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number of compounds that enter the HTS process is the in silico screening of CL,

a process applied both to diverse and focused libraries with the aim to select for

HTS the compounds with potential ‘drug–like’ characteristics and sufficient diver-

sity. The process of virtual screening of combinatorial libraries (VSCL) starts from

a wide selection of reactants that are used to generate in silico a huge number of

chemical compounds. Then, the structural descriptors relevant for the investigated

biological target are identified and computed for all compounds in the virtual

library. Finally, the compounds for chemical synthesis and HTS are selected with a

statistical algorithm that implements a similarity, diversity, or drug–like paradigm.

In VSCL the chemical structure is translated into a numerical form with the aid

of various structural descriptors, many of them traditionally used in QSPR and

QSAR. To be efficient, the in silico compound screening uses descriptors that

require small computational resources, such as counts of atom types, counts of

functional groups, fingerprints, constitutional descriptors, graph invariants and

topological indices. A recent VSCL method proposes to compute the topological

indices of reaction products without actually assembling the molecules from the

building blocks [58–60]. Using various graph decomposition equations, several

algorithms were developed for computing the Wiener-type indices, Wiener poly-

nomial and Ivanciuc–Balaban indices for large combinatorial libraries. The TI of

the reaction product is obtained from the topological indices of the reactants, thus

greatly increasing the efficiency of generating the structural descriptors in the

VSCL process.

1.5

Conclusions

Molecular graph descriptors are widely used in modeling physical, chemical, or

biological properties, in similarity and diversity assessment, database mining, and

in the virtual screening of combinatorial libraries. In 1947 Wiener introduced a

graph invariant related to graph distances, the now called Wiener index W. Hosoya

extended the W index to cyclic graphs, a development that was essential for the

widely acceptance of this topological index and for its applications in QSPR and

QSAR models. Among the large number of molecular graph descriptors proposed

in the literature, Wiener-type, connectivity, and electrotopological indices are the

most widely used topological indices in QSPR, QSAR, similarity, diversity, and vir-

tual screening of combinatorial libraries. Another important contribution to the

theory of topological indices was their definition for vertex- and edge-weighted

graphs representing molecules with heteroatoms and multiple bonds. Recent pub-

lications in the domain of topological indices indicate several directions were

interesting developments are expected to occur: development of novel molecular

matrixes, that reflect in a numerical form new features of the molecular graph;

definition of new graph operators that can generate families of topological indices;

QSPR and QSAR applications for large databases of chemical compounds and for

new physical, chemical, or biological properties; use of topological indices to mea-
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