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1. INTRODUCTION

The growing interest in the application of Artificial Neural Networks (ANN)1-4 in
chemistry,5-8 in chemical engineering,9 and in biochemistry10 is a result of their
demonstrated superiority over the traditional models. Neural networks were used in
quantitative structure-property relationships (QSPR) and quantitative structure-activity
relationships (QSAR) studies to predict various physical, chemical, and biological
properties of organic compounds. Conventional QSPR and QSAR require the user to
specify the mathematical function of the model. If these functions are highly nonlinear
then considerable mathematical and numerical expertise is needed to obtain significant
models. In recent years this problem was solved with ANN that generate highly non-
linear models between input and output variables; an important advantage of ANN is the
fact that the mathematical form of the relationship between the input and output variables
is not specified by the user. An ANN may be represented as an assembly of units
(artificial neurons) that performs some basic mathematic operations and that receive and
send signals through connections. Each connection between two neurons has an
adjustable weight that modifies the signal send through that connection. The artificial
neuron is a simplified model of a neuron having four basic functions: receives input
signals from the environment or from the neurons in the previous layer; makes a
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summation of the inputs signals; the result of summation is passed to the activation
function and transformed with a mathematical function; the result of the activation
function is used by a transfer function to produce an output value that is send to the
neurons in the next layer. The most important activation functions are: linear, Act(x) = x;
sigmoid, Act(x) = 1/(1 + e–x); hyperbolic tangent, Act(x) = tanh(x); symmetric
logarithmoid, Act(x) = sign(xx) ln(1+|x|); bell, Act(x) = 1/(1 + x2).11-15
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Figure 1. The topology of a multilayer feed-forward neural network with three layers

In multi-layer feedforward (MLF) networks, usually used in QSPR and QSAR
studies, the neurons are arranged in distinct layers, with connections between the neurons
in different layers; the structure of a simple MLF network with three layers is presented
in Figure 1. The input layer I receives the input signals from the environment and sends
them to the next layer. The middle layer H is called the hidden layer because it is not
connected directly to the environment, but receives signals from the input layer,
transforms them, and sends information to the output layer or to the next hidden layer.
The output layer O receives signals from the hidden layer, processes them, and sends to
the environment the result computed by the network. Each neuron in the hidden and
output layers is connected to a bias neuron B. An MLF contains a number of input
neurons equal to the number of descriptors that describe the structure of each chemical
compound, and a number of output neurons equal to the number of physical, chemical, or
biological properties modeled by the ANN. The network in Figure 1 has three input
neurons, meaning that the chemical structure is represented with three descriptors,
denoted here V1, V2, and V3. When a pattern representing in numerical form the structure
a certain molecule is presented to the network, descriptor V1 goes to input neuron 1, V2

goes to input neuron 2, and V3 goes to input neuron 3. In this way the information
regarding the chemical structure of a molecule is entered into the ANN. The hidden layer
is formed by neurons 4 and 5, and the output layer contains neuron 6. The output neuron
6 offers the computed value of the property P for the compound whose structure was
encoded in descriptors V1, V2, and V3. We have to note here that the multilinear
regression model, widely used in QSPR and QSAR, is equivalent with a multi-layer
feedforward network without hidden layer and with one output neuron provided with
linear activation function.



New Neural Networks for Structure-Property Models 223

An important problem for the QSPR and QSAR applications of ANN remains the
numerical representation of the chemical structure used as input by the ANN; a recent
review presents the molecular graph descriptors used as input data for ANN models.16

The molecular graph descriptors17-21 represent an important class of structural descriptors
for QSPR and QSAR studies; these descriptors present important advantages when
compared with other classes of descriptors because they can be easily computed from the
molecular graph and they do not require the computation of the molecular geometry. For
example, simple graph descriptors (the number of carbon atoms and the number of pairs
of methyl groups separated by 3 up to 8 carbon-carbon single bonds) were used to obtain
an ANN model for six physical properties of alkanes.22

The usual structure of an MLF network is not dependent on the chemical structure of
the molecules from the calibration and prediction sets. Three new neural networks were
defined in order to encode into their topology the chemical structure of each compound
presented to the network: the Baskin-Palyulin-Zefirov neural device,23 ChemNet defined
by Kireev,24 and MolNet introduced by Ivanciuc.25,26 All the above neural networks
change their topology (the number of neurons in the input and hidden layers, together
with the number and type of connections) according to the molecular structure of the
chemical compound presented to the network. The structure of each molecule is
represented as a molecular graph that is used to set the ANN topology. In this review we
present the rules that define the three neural models together with examples of network
generation from the molecular graph.

2. THE BASKIN, PALYULIN, ZEFIROV NEURAL DEVICE

The Baskin, Palyulin, Zefirov (BPZ)23 neural device is a special MLF neural network
that generates nonlinear QSPR and QSAR correlations using as input data local invariants
describing the atomic environment or bonding relationships. The structure of the BPZ
neural device, presented in Figure 2, is constructed by analogy with a biological vision
system and contains a sensor field, a set of eyes, and a brain. A chemical structure
modeled by the BPZ neural device is represented as a molecular matrix that is
superimposed over a sensor field. The sensor field receives the network input from the
numerical representation of the chemical structure. The information received by the
sensor field is transmitted to a set of eyes that transform it in several MLF networks, and
sends signals to the next block, the brain. All output signals from the eyes are processes
in the brain with the aid of an MLF ANN that offers at its output the computed values of
the investigated properties. According to a set of rules the structure of the sensor field and
of the eyes depends on the chemical nature of the atoms and their bonding relationships
for each molecule presented to the neural device.
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Figure 2. The structure of the Baskin, Palyulin, Zefirov neural device.

All input neurons in the sensor field receive specific structural elements from a
chemical compound and send this information to the neural networks situated in the eyes.
The neurons that form the eyes and the brain receive signals, sum them, transform the
sum, and send output signals. These neurons are connected to a bias neuron; in the
mathematical equations that describe their function the connection from the bias neuron
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is represented as a threshold. The three building blocks that form the BPZ neural device
are presented in detail below.

Using a matrix representation, the chemical structure of each organic compound
presented to the BPZ neural device is encoded into the sensor field. The atoms are labeled
from 1 to N, where N is the number of non-hydrogen atoms from the current molecule.
The molecular structure is represented by a N×N matrix in which the ii-th element
(situated on i-th position of the diagonal) corresponds to a certain property of the ith atom
in the current molecule, and the ij-th element (situated at the intersection of the ith row
with the j-th column) is a numerical value representing some relationship between atoms
i and j from the current molecule. This molecular matrix is symmetric, i.e. the ij-th
element is identical with the ji-th element. The atomic properties that can be used on the
main diagonal of this matrix are the principal quantum number, the electronegativity, the
atomic charge, the number of valence electrons, the number of hydrogen atoms attached
to the atom. The nondiagonal matrix elements represent various interatomic relationships,
such as connectivity information, the interatomic distance or the bond order. The sensor
field is formed by input neurons arranged in a square N×N matrix. Each neuron
corresponds to an element in the molecular matrix from the current molecule. A sensor
neuron receive the value of the corresponding molecular matrix element and send the
structural information through weighted connections to the eyes.

The BPZ neural device contains two or more eyes, each one receiving specific
information about the chemical structure of the current molecule. An eye contains a set of
identical receptors and one or more collectors. All receptors situated in an eye are
identical, containing the same number of neurons, the same weights for connections
between identical pairs of neurons, and equal thresholds for identical neurons situated in
different receptors. A receptor is an MLF network that receives signals from the sensor
field, processes them in a hidden layer, and from the output layer sends signals to the
collector(s). The hidden layer can have any number of neurons, but the output layer
always contains one neuron that sends signals to the collectors from the same eye. Each
eye receptor is connected to a specific field from the sensor field that contains a part of
the information related to the chemical structure. For each receptor there is an ordered
vector {v1, v2, ..., vi, … vn}, where n is the number of atoms sending signals to the
receptor and vi is the label of the corresponding atom in a molecule. This specific vector
is called a receptor identifier and represents the molecular substructure perceived by a
specific receptor. The number of receptors situated in an eye is equal to the number of
different receptor identifiers that can be generated, i.e. N!/(N – n)!, where N is the number
of non-hydrogen atoms in the molecule encoded in the sensor field, and n is the number
of atoms in a receptive field. A receptor identifier containing n atoms is called n-atomic.
A molecule that contains three non-hydrogen atoms can be analyzed by the BPZ neural
device in three ways: with three receptors receiving signals from the one-atomic receptor
identifiers {1}, {2}, and {3}; with six receptors receiving signals from the two-atomic
receptor identifiers {1, 2}, {1, 3}, {2, 1}, {2, 3}, {3, 1}, and {3 ,2}; with six receptors
receiving signals from the three-atomic receptor identifiers {1, 2, 3}, {1, 3, 2}, {2, 1, 3},
{2, 3, 1}, {3, 1, 2}, and {3, 2, 1}.
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The signals processed in each receptor from an eye are send to one or more collectors
from the same eye. Each collector contains a neuron that receives signals, sums them,
transforms the sum, and sends a signal to the brain of the BPZ neural device. The brain is
a feed-forward neural network that receives signals from every collector, processes them
in a hidden layer, and from the output layer sends signals that represent the computed
value of the investigated molecular property. The hidden layer can contain any number of
neurons, but the output layer always contains a number of neurons equal to the number of
molecular properties modeled with the BPZ neural device. Each output neuron
corresponds to one and only one molecular property.
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Figure 3. A minimal configuration of the Baskin, Palyulin, Zefirov neural device.
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The BPZ neural device that contains all receptors needed for the perception of a
molecule represents the configuration for that molecule. A BPZ neural device with a
minimal configuration, presented in Figure 3, has one receptor in each eye and contains
only mutually independent adjustable parameters. A minimal configuration can be used
as a template for the construction of the BPZ neural device for any molecule presented to
the neural device and encoded in the sensor field. In this cqse, the sensor field is a square
matrix containing only atomic sensors situated on the diagonal of the matrix. The
minimal configuration has two eyes with different functions: eye 1 receive signals from
individual atoms, while eye 2 receives from the sensor field signals corresponding to
pairs of bonded atoms. The signals from the sensor neuron 1 go to neurons 3 and 4 that
represent the hidden layer of the receptor R1 from Eye 1. The processed signals are send
to the output neuron 7. The collector C1 has one neuron, 9, that gets the signal from the
eye receptor and sends it to the brain. From the neurons in the sensor field Eye 2 receives
signals from pairs of bonded atoms: neurons 1 and 2 send two signals to receptor neuron
5, and another pair of signals to receptor neuron 6. The signal flow in Eye 2 is similar
with that from Eye 1: from the input neurons 5 and 6 to the output neuron 8 and then to
the collector neuron 10. The brain has an input layer that contains neurons 11 and 12, and
an output layer containing the neuron 13. The brain input neurons 11 and 12 receive
signals from the two eyes collector neurons 9 and 10, respectively. Brain output neuron
13 offers the computed molecular property of the molecule encoded in the sensor field.
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Figure 4. The structure of the Baskin, Palyulin, Zefirov neural device for ethane.

The structure of the BPZ neural device for ethane is presented in Figure 4. Ethane is
considered here as its hydrogen-depleted molecular graph. The threshold of a neuron i is
denoted with θi and the weight of the connection between neurons i and j is denoted with
wij. According to the rules for generating a BPZ neural device, certain connections
weights and neuron thresholds have identical values. In this way, the number of
adjustable parameters is much lower than the number of connections between neurons.
For ethane, the receptor field is a square 2×2 matrix, containing only atomic sensors
(neurons 1 and 2) situated on the diagonal of the matrix, corresponding to the two carbon
atoms in ethane. The input value for the sensor neurons can be any property of the
corresponding atom; if this property is the atomic number Z, both sensor neurons in
ethane receive the value 6. The neural device presented in Figure 3 consists of two eyes,
Eye 1 and Eye 2, with different functions: each receptor situated in Eye 1 receives signals
from only one sensor neuron representing an atom, while each receptor from Eye 2
receives signals from two-atomic receptive fields corresponding to atoms that have a
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bond between them in the molecule encoded in the sensor field. Each eye has two
receptors and one collector. The ethane BPZ neural device is generated from the minimal
configuration neural device presented in Figure 3, and as one can see from Figure 4, each
receptor has two hidden and one output neuron. From the BPZ neural device generation
algorithm it results that the following eye neurons thresholds are identical: θ3 = θ5, θ4 =
θ6, θ7 = θ9, θ8 = θ10, θ11 = θ12, and θ13 = θ14. Some connections between neurons in the
sensor field and neurons in the receptors input layers have identical weights: w1,3 = w2,5,
w1,4 = w2,6, w1,7 = w2,9, w1,9 = w2,7, w1,8 = w2,10, and w1,10 = w2,8. One finds also identical
weights for certain connections between neurons in the receptor input and output layers:
w3,11 = w5,12, w4,11 = w6,12, w7,13 = w9,14, and w8,13 = w10,14. Finally, the following
connections between receptors and collectors have identical weights: w11,15 = w12,15, and
w13,16 = w14,16. Each eye contains a single collector containing one neuron, namely
neurons 15 and 16, and each eye sends signals to the brain. The BPZ neural device was
successfully used in the prediction of alkanes boiling points, hydrocarbons viscosity, heat
of evaporation, and density, cyclohexane heat of solvation, organic compounds
polarizability, and gases anesthetic pressure.

3. CHEMNET

ChemNet is an MLF neural network that encodes in its topology the structure of each
molecule presented to the network, and computes an atomic property, such as the atomic
charge.24 Each molecule is represented by its labeled hydrogen-depleted molecular graph.
For each atom i from the molecular graph ChemNet has two corresponding neurons with
the same label i, one in the input layer and the second one in the hidden layer. The output
layer has only one neuron, representing the atom from the molecular graph whose
property is computed with ChemNet. The network contains also a bias neuron, connected
to the hidden and output neurons. ChemNet changes the number and significance of the
neurons with each molecule presented to the network. The connections between the input
and hidden layers correspond to the bonding relationships between pairs of atoms, i.e.
two pairs of atoms separated by the same number of bonds have identical connection
weights.
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As an example of ChemNet structure we present the network generation for butanone
1. In ChemNet the bonding relationship that determines the type of the connections
between input and hidden layers considers only the number of bonds separating a pair of
atoms. These relationships can be determined from the distance matrix of the molecular
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graph computed by considering that all atoms are carbons and all bonds are single. The
distance matrix of the molecular graph 1, D(1), is:

D(1)

1 2 3 4 5

1 0 1 2 3 2
2 1 0 1 2 1
3 2 1 0 1 2
4 3 2 1 0 3
5 2 1 2 3 0
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Figure 5. The ChemNet topology for butanone 1 that computes a property of atom 1. Each neuron
in the input (I) and hidden (H) layers corresponds to the atom with the same label from the

molecular graph 1. The connections between atoms situated at distances 1, 2, and 3 are presented
in a, b, and c, respectively, while the connections from the bias neuron B are presented in d. Input

values represent the number of hydrogen atoms attached to each atom in the molecular graph 1.
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The molecular graph of butanone has 5 atoms and the corresponding ChemNet has 5
input and 5 hidden neurons. Each neuron from the input and hidden layers of ChemNet
corresponds to the atom with the same label in the molecular graph 1, as presented in
Figure 5a-d; for example, the oxygen atom is represented by the input and hidden
neurons labeled with 5. All pairs of atoms in 1 that are separated by the same number of
bonds are characterized by input-hidden connections with identical weights. A bonding
relationship between two atoms i and j corresponds to two identical input-hidden
connections: the first from input neuron i to hidden neuron j, and the second from input
neuron j to hidden neuron i. In 1 there are 4 pairs of atoms separated by one bond, as can
be seen also from the distance matrix D(1). In Figure 5a we present the ChemNet
connections corresponding to pairs of atoms separated by one bond, giving the following
equalities between the corresponding weights: w1,2 = w2,1 = w2,3 = w3,2 = w3,4 = w4,3 = w2,5

= w5,2. The ChemNet connections corresponding to pairs of atoms separated by two
bonds are presented in Figure 5b. From the molecular graph of 1 and its corresponding
distance matrix it follows that w1,3 = w3,1 = w1,5 = w5,1 = w2,4 = w4,2 = w3,5 = w5,3. The 4
input-hidden connections corresponding to pairs of atoms separated by three bonds are
presented in Figure 5c; they give the following equalities between the corresponding
weights: w1,4 = w4,1 = w4,5 = w5,4. All connections from the bias neuron to the 5 hidden
neurons, presented in Figure 5d, have the same weight: wB,1 = wB,2 = wB,3 = wB,4 = wB,5.

In Figure 5 we present the ChemNet structure for butanone when atom 1 is the output
atom, i.e. the network computes an atomic property of the atom 1. In this case, the output
layer contains one neuron representing the atom 1 from butanone. The type of a hidden-
output connection joining a hidden neuron i with an output neuron j, denoted vij, is
determined by the number of bonds between atoms i and j. There is one hidden-output
connection corresponding to atoms one bond away from atom 1, representing the bond
between atoms 2 and 1, as presented in Figure 5a. The ChemNet hidden-output
connections corresponding to atoms two bonds away from atom 1 are presented in Figure
5b. From the molecular graph of 1 and its corresponding distance matrix it follows that
two hidden-output connections have identical weights, namely v3,1 = v5,1. The connection
between atoms 4 and 1, separated by three bonds, is depicted in Figure 5c.
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Figure 6. The ChemNet topology for butanone 1 that computes a property of atom 2. Each neuron
in the input (I) and hidden (H) layers corresponds to the atom with the same label from the

molecular graph 1. The connections between atoms situated at distances 1, 2, and 3 are presented
in a, b, and c, respectively, while the connections from the bias neuron B are presented in d. Input

values represent the number of hydrogen atoms attached to each atom in the molecular graph 1.

The ChemNet topology that computes an atomic property for atom 2 in butanone is
given in Figure 6. The input and hidden layers, together with the connections between
them, are identical with those from the ChemNet network generated for the output atom
1, as can be seen by comparing Figures 5 and 6. Therefore, we will explain in detail only
the connections between the hidden and output layers. The ChemNet hidden-output
connections corresponding to atoms one bond away from atom 2 are presented in Figure
6a, and correspond to three hidden-output connections with identical weights: v1,2 = v3,2=
v5,2. There is one hidden-output connection corresponding to atoms two bonds away from
atom 2, representing the path between atoms 4 and 2, as presented in Figure 6b, and there
is no atom three bonds away from atom 2, as can be seen from Figure 6c. The
connections from the bias neuron to the 5 hidden neurons, and to the output neuron
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representing atom 2 are depicted in Figure 6d. ChemNet was applied for the computation
of AM1 atomic charges.

4. MOLNET

MolNet is a multi-layer feedforward neural network that can be used to compute
molecular properties on the basis of chemical structure descriptors.25,26 A specific feature
of MolNet is that the number of neurons and the connections between them depend on
the chemical structure of each molecule presented to the network. Molecules are
represented by the corresponding hydrogen-suppressed molecular graph. Each non-
hydrogen atom in a molecule has a corresponding neuron in the input and hidden layers.
The number of neurons in the input and hidden layers is equal to the number of atoms
from the molecular graph. The output layer has only one neuron, providing the calculated
value of the molecular property under investigation. The network has a bias neuron,
connected to all hidden and output neurons.

The connection between an input and a hidden neuron characterizes the bonding
relationship between the corresponding atoms. Input-hidden connections corresponding
to the same bonding relationship between two atoms, either in the same molecule or in
different molecules, belong to the same connection class and they have identical weights.
In MolNet the bonding relationship considers the shortest path between a pair of atoms.
Two identical paths contain the same ordered sequence of atoms and bonds; such paths
belong to the same connection class. A neuron that corresponds to an atom i in the input
layer is connected to the neuron corresponding to the same atom i in the hidden layer by a
connection; these connections are classified according to the chemical nature of the
atoms.

The topology of the connections between the hidden and output layers is determined
by the partitioning in classes of the atoms from the molecule presented to MolNet. The
atoms are partitioned according to the atomic number Z, the hybridization state and the
degree. All atoms from a class, either in the same molecule or in different molecules,
correspond to the same type of hidden neurons. We have to point here that even for
neurons in the same class their contribution to the molecular property depends also on the
signal received from the input layer, signal that can be different for neurons in the same
class. Each neuron in the hidden layer is connected to the bias neuron by connections
partitioned in the same way with the connections between the hidden and output layers,
i.e. according to the atom types as defined above. Also, the bias neuron is connected with
the output neuron.

For a molecule with N non-hydrogen atoms, there are N2 connections between the
input and hidden layers, N connections between the hidden and output layers, N
connections from the bias neuron to the hidden neurons, and one connection from the
bias neuron to the output neuron. Some connections may have identical weights
according to the partitioning schemes described above. This implies that for MolNet the
number of adjustable parameters is much smaller than the number of connections. When
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a molecule is presented to MolNet input neuron i receives a signal representing an atomic
property computed for the atom i of the respective molecular graph. Any vertex invariant
computed from the structure of the molecular graph can be used as input for MolNet.

As an example of MolNet generation we consider t-butylcyclopropane 2 whose
molecular graph is presented below:
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In the molecular graph of an alkane, the topological distance between two vertices i
and j, dij, is equal to the number of edges (corresponding to carbon-carbon single bonds)
on the shortest path between the vertices i and j. Distances dij are elements of the distance
matrix of a molecular graph G, D = D(G). The distance matrix of the molecular graph of
2, D(2), is:

D(2)

1 2 3 4 5 6 7

1 0 1 1 1 2 2 2
2 1 0 1 2 3 3 3
3 1 1 0 2 3 3 3
4 1 2 2 0 1 1 1
5 2 3 3 1 0 2 2
6 2 3 3 1 2 0 2
7 2 3 3 1 2 2 0

Molecule 2 contains 7 carbon atoms. Each carbon atom from the molecular graph 2
has a corresponding neuron with the same label in the input and hidden layers of MolNet,
as presented in Figure 7a-d. The distance matrix of t-butylcyclopropane has 4 classes of
topological distances: 7 distances 0; 7 distances 1; 8 distances 2; 6 distances 3. The 4
types of graph distances correspond to four IH connection types or parameters that are
adjusted during the calibration phase. A bonding relationship between two atoms i and j
corresponds to 2 identical IH connections: the first from input neuron i to hidden neuron
j, and the second from input neuron j to hidden neuron i. As an example of identical IH
connections, consider the 6 pairs of atoms: 2 and 5; 2 and 6; 2 and 7; 3 and 5; 3 and 6; 3
and 7. The graph distance between the atoms in the above pairs is 3. Therefore, for
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molecule 2 there are 12 IH connections with identical weights between the above 6 pairs
of atoms, as depicted in Figure 7d. These 12 connections have an identical weight and
correspond to the parameter for two carbon atoms situated at distance 3.
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Figure 7. The structure of the MolNet IH connections between the input (I) and hidden (H) layers
for t-butylcyclopropane 2; each neuron corresponds to the carbon atom with the same label from
the molecular graph 2. The connections between atoms with the same label are presented in a,

while the connections between atoms situated at distances 1, 2, and 3 are presented in b, c, and d,
respectively. Input values represent vertex degrees.

In Figure 7a-d we present the structure of IH connections according to the classes of
identical weights: there are 7 connections corresponding to distance 0 (Figure 7a), which
in our case have identical weights because all non-hydrogen atoms are carbon atoms w1,1

= w2,2 = w3,3 = w4,4 = w5,5 = w6,6 = w7,7; the 7 pairs of atoms situated at distance 1
correspond to the 14 connections with identical weights in Figure 7b: w1,2 = w2,1 = w1,3 =
w3,1 = w1,4 = w4,1 = w2,3 = w3,2 = w4,5 = w5,4 = w4,6 = w6,4 = w4,7 = w7,4; Figure 7c presents
the 16 connections between the 8 pairs of atoms situated at distance 2, with the following
equalities between connection weights: w1,5 = w5,1 = w1,6 = w6,1 = w1,7 = w7,1 = w2,4 = w4,2 =
w3,4 = w4,3 = w5,6 = w6,5 = w5,7 = w7,5 = w6,7 = w7,6; the 12 connections corresponding to the
6 pairs of atoms situated at distance 3 are presented in Figure 7d: w2,5 = w5,2 = w2,6 = w6,2

= w2,7 = w7,2 = w3,5 = w5,3 = w3,6 = w6,3 = w3,7 = w7,3.
The connections between the hidden and output layers (the HO connections) are

determined by the structure of the molecule presented to MolNet. In alkanes the HO
connections are classified according to the degree of the carbon atoms: hidden neurons
representing atoms with identical degrees are linked to the output neuron with
connections having identical weights. Because the molecular graph of t-
butylcyclopropane contains three atoms with degree 1, two atoms with degree 2, one
atom with degree 3, and one atom with degree 4, the 7 HO connections belong to four
classes (i.e. adjustable parameters). The connections between the bias neuron and the
neurons in the hidden layer (the BH connections) are classified according to the same
rules used for the HO connections, giving in the case of molecule 2 four adjustable
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weights. For example, there are 3 atoms with degrees 1 in t-butylcyclopropane, namely 5,
6, and 7. Figure 8a presents their connections from the bias neuron and to the output
neuron. From the rule used to generate the MolNet connections it follows that the 3 atoms
with degrees 1 have HO connections with identical weights. If we denote with vi,o the
weight of the connection between hidden neuron i and output neuron o, and with vb,i the
weight of the connection between the bias neuron b and the hidden neuron i, we have the
following equalities: v5,o = v6,o = v7,o and vb,5 = vb,6 = vb,7. Because the 3 atoms are also
topologically equivalent, the signal send to the output neuron is identical. The same
Figure 8a depicts the 3 identical BH connections to the 3 atoms with degrees 1. As a
consequence, the signal received from the bias by the neurons 5, 6, and 7 is identical.
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Figure 8. The structure of the MolNet connections between the hidden (H) and output (O) layers
for t-butylcyclopropane 2; the bias neuron is labeled with B. The BH and HO connections to/from

hidden neurons representing atoms with the degree 1, 2, 3, and 4 are presented in a, b, c, and d.

The structure of BH and HO connections is presented in Figure 8a-d: the bias and
output connections to atoms degrees 1 are presented in Figure 8a; those connecting the
atoms with degrees 2, 3, and 4 are depicted in Figure 8b-d, respectively. The bias neuron
has also a connection to the output neuron (BO connection).

Considering all connection types present in the case of t-butylcyclopropane the total
number of adjustable weights is: 4 (IH connections) + 4 (BH connections) + 4 (HO
connections) + 1 (BO connection) = 13. MolNet can contain more parameters,
corresponding to bonding relationships that are not present in this example, but are found
in one or more molecules from the calibration set. A certain connection type has the same
weight in all molecules that contain it.

MolNet is an MLF network and its use involves two phases: a calibration (learning)
and a prediction phase, respectively. The target of the calibration phase is to compute an
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optimal set of IH, HO, BH and BO connection types (adjustable parameters) that
minimizes the error in computing the investigated molecular property for the calibration
set of molecules. Any optimization algorithm can be used to determine an optimal set of
connection types. In the prediction phase MolNet uses the weights determined in
calibration to compute the investigated molecular property for molecules that were not
present in the calibration set. If the set of molecules used in the prediction phase contains
bonding relationships that are absent in the molecules used in the calibration phase these
bonding relationships are neglected in predicting the molecular property.

Using a vector of input data computed from the molecular graph, we present the
signal flow through MolNet. The degree of an atom i from a molecular graph G, DEGi =
DEGi(G), is computed with the formula:

DEG Ai ij
j

N

=
=

∑
1

(1)

where A = A(G) is the adjacency matrix. The degree vector of t-butylcyclopropane 2
is DEG(2) = {3, 2, 2, 4, 1, 1, 1}. After the generation of MolNet as presented in Figures 7
and 8, the vector of atomic descriptors is entered into the network through the neurons in
the input layer. As is usual with neural networks, the input and output values are scaled.
Each input neuron receives a numerical value representing the degree of the atom with
the same label from the molecular graph. In the case of t-butylcyclopropane, input neuron
1 receives the value 3, neuron 2 receives the value 2, neuron 3 receives the value 2,
neuron 4 receives the value 4, and neurons 5, 6, and 7 all receive the same value 1. In this
way the DEG vector is entered into MolNet and is then propagated through the network
following the rules of MLF ANN. The signal that is offered by the output neuron
represents the computed value of the investigated property for t-butylcyclopropane.

5. CONCLUSIONS

Usually, a multi-layer feedforward neural network has a topology that does not
depend on the structure of the chemical compounds used in calibration or prediction. The
network receives information about the structure of the compounds only from the atomic
or molecular descriptors received by the neurons in the input layer. In this review we
have presented three new MLF neural models that encode the molecular structure into the
topology of the neural network: ChemNet defined by Kireev, the neural device
introduced by Baskin, Palyulin and Zefirov, and MolNet introduced by Ivanciuc. These
neural models are developed specifically for chemical applications; using a set of rules
each network encodes into its topology the structure of the molecule examined by the
ANN. Depending on the structure of each molecule, the network changes the number of
neurons in the input and hidden layers, together with the number and type of connections.
Such neural models that use information on the chemical structure to generate the
network were applied with success to QSPR studies.
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