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Table 14 TRE and TREPE Values for Conju-
gated Hydrocarbons (in B Units)

Molecule TRE TREPE
Benzene 0.276 0.046
Naphthalene 0.390 0.039
Anthracene 0476 0.034
Phenanthrene 0.546 0.039
Cyclobutadiene —1.228 —0.307
Benzocyclobutadiene -0.392 —0.049

cyclic and acyclic Sachs graphs. The TRE method considers
that the contribution to the aromatic stability in a conjugated
molecule is represented by the cyclic Sachs graphs and, there-
fore, the reference structure must contain only acyclic Sachs
graphs. From the set of acyclic Sachs graphs the acyclic
polynomial is computed with equation (50); the spectrum of
the acyclic polynomial, Sp(Ae, G) = (y;, i = 1,2, ..., N)rep-
resents the energy levels of the reference structure. From
the formula of resonance energy, equation (80), that of Ej,
equation (74), and the characteristic and acyclic polynomials
spectra, the relation for the topological resonance energy is
obtained:

N
TRE =Y gi(x — ) @D

i=1

The TRE can be normalized by dividing its value into the
total number of m-electrons, N, giving the TRE per m-electron
(TREPE) value:

TREPE = TRE/N, (82)

TREPE represents the conjugation stabilization or destabiliza-
tion that one m-electron contributes to the molecular 7-system.
TRE values were computed for a large variety of conjugated
compounds, including conjugated ions, radicals, and ion radi-
cals, coumarins, thiocoumarins, and bridged heteroannulenes.
Selected TRE and TREPE values for conjugated hydrocarbons
are presented in Table 14.

13 THE TOPOLOGICAL EFFECT ON MOLECULAR
ORBITALS

The topological effect on molecular orbitals (TEMO) theo-
rem? indicates that the molecular topology of certain isomers
imposes a certain pattern of interlacing of their 7 MO energies.
As depicted in Figure 2, the isomers considered in the TEMO
model are obtained from two Hickel molecular graphs A and
B: the isomer S is obtained by connecting vertices a and b
from A to vertices ¢ and d from B, respectively, while the
isomer T is obtained by connecting vertices a and b from A
to vertices d and ¢ from B, respectively.

It has been demonstrated that the m MO energies of
the S, Sp(S) = ()i =1,2,...,2n),and T, Sp(T) = (] |i =
1,2,...,2n), isomers satisfy the interlacing theorem:

fl<el <gj<ef<e<o<e, <6, <8, <8, 63

An example of TEMO pattern is presented in Table 15 for
o-benzoquinodimethane 50 (S isomer) and p-benzoquinodi-
methane 51 (T isomer); the energy levels are computed from
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Figure 2 The construction of a pair of § and T isomers
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Table 15 The TEMO Interlacing of the
Hiickel = Molecular Orbitals of 0-Benzo-
quinodimethane 50 (S Isomer) and
p-Benzoquinodimethane 51 (T Isomer)

Ei S T

e ~2.19353

el —2.17009
] —1.48119
& —1.29496

e —1.19353

el —1.00000
e} —0.31111
& —0.29496

&3 0.29496

el 0.31111
el 1.00000
e 1.19353

& 1.29496

=) 1.48119
el 2.17009
& 2.19353

the adjacency matrix of the corresponding Hiickel molecular

graphs.
L L
X ~4

50 51

The TEMO pattern was detected for a large number of S, T
pairs of isomers for MO energies computed at various levels
of quantum theory, from Hiickel to ab initio.

14 STRUCTURAL DESCRIPTORS DERIVED FROM
MOLECULAR GRAPHS

The chemical structure is represented in a non-numerical
way by a molecular graph, but in many instances a quantitative
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characterization of the molecular structure is necessary, i.e.,
in comparing molecular structures, in similarity studies, or to
compute structural parameters for QSPR and QSAR studies.
This quantitative characterization has to be a graph invariant,
i.e., to have the same value for a given molecule regard-
less of the graph labeling. A graph invariant is also called
a topological index (TI), structural parameter, or structural
descriptor; reviews presenting TI definitions and applications
are available 62021

The number of vertices and edges in a molecular graph
are examples of simple topological indices. More complex
structural descriptors were presented in Section 7 on molecular
matrices and Section 8 on molecular graph polynomials. We
mention here some of the most used topological indices: the
Wiener W index;3¢ the Randi¢ connectivity index y extended
by Kier and Hall;'®!® the Hosoya Z index;334142 and the
Balaban J index.34%

15 ISOMER ENUMERATION

Isomers are stable chemical compounds with an identical
molecular formula but different structure, conformation, or
configuration which display different physicochemical prop-
erties. The isomer enumeration represents an old graph theory
application in chemistry; the presentation of the most impor-
tant isomer enumeration algorithms can be found in a number
of reviews,36:11=1348

Cayley developed generating functions for enumeration of
alkanes and alkyl radicals and produced extensive numerical
data on the number of isomers with various molecular for-
mulas. Henze and Blair developed a recursion algorithm for
isomer enumeration. Polya*® introduced the most powerful iso-
mer enumeration algorithm by using the molecular symmetry,
weighting factors, and generating functions. The mathemati-
cal background of the Pdlya enumeration method is presented
here, together with applications and examples.#8=5

An arrangement of a set of objects is an ordering of these
objects. A permutation 7 is an operation that changes one
arrangement into another arrangement and can be represented
in a two-row notation by the following expression:

ﬂ=<l 2 3 .00 N) (84)
pr pp p3 ... pi ... DN

with the meaning that object 1 is permuted to object pi,
object 2 is permuted to object p,, object 3 is permuted to
object p3, object i is permuted to object p;, and object N is
permuted to object py. A permutation of a set of n objects
is called a cyclic permutation (or cycle) of length m if it
moves the object in position p; to position py, the object
in position p, to position ps, ..., the object in position p,—i
to position p,,, the object in position p, to position p|, and
all other objects are left fixed. A cyclic permutation is denoted
by ((p1, P2+ P3++ -+ Pm—1, Pm)). A transposition is a cycle of
length 2.

Consider four distinct objects aj, a2, a3, and a4 and
four arrangements with the four objects: A| = (ajaz2a3as);
Az = (a1a3a2a4); A3 = (axa3ayas); and Ag = (@za3asay). The
permutation which changes A; to Ay is the transposition
1 = ((2 3)); the permutation which changes A| to A; is a
cycle of length 3 denoted m; = ((1 2 3)); and the permuta-
tion which changes A; to A4 is a cycle of length 4 denoted

3 = ((1 2 3 4)). If we indicate also the objects that remain
fixed in a permutation, the first two permutations are denoted:
m = ((1)(2 3)(4)) and 7> = ((1 2 3)(4)).

The set of all possible permutations that can be applied to
a set of n objects, together with the composition operation,
forms a permutation group. If one considers a set containing
three objects then the six permutations of its group, denoted
S3, are: p1 = ((NQ2)AB), p2 = (1 2)(3)), p3 = (1 3)(2)),
ps = ((1)(2 3)), ps = ((123)), and pg = ((1 3 2)). For a
set of n objects it corresponds to the group S, containing
n! permutations, the symmetric group of degree n.

Two permutations are disjoint if they act on mutually exclu-
sive sets of objects in an arrangement. To any permutation 7
of n objects one assignes a monomial s(rr) in the variable sy
corresponding to a cyclic permutation of length k in the unique
product of disjoint cycles of 7. A fixed object corresponds to
a factor s}, m fixed objects correspond to 7', and a transposi-
tion corresponds to sé. The factors associated with the above
permutations 7y, 72, and 73 are s3s), sisi, and s}.

Let T be a permutation group of degree n. For each
permutation 7 € T, let j(7) be the number of cycles of length
k in the disjoint cycle decomposition of &. The cycle index
Z(T") is the polynomial in n variable sy, s3,....s, given by
the formula:

z(N = % > ﬁs{*(’” (85)

el k=1

Pélya’s Theorem. If c(x) is the counting series for a collec-
tion of weighted objects, and T is a permutation group acting
on n positions such that I' defines an equivalence relation
on arrangements consisting of n objects, then, the substituted
cycle index Z(T', c(x)) is the counting series for nonequiva-
lent arrangements consisting of n objects where the weight of
an arrangement is the sum of the weights of the n objects of
which it is composed.

The derivation of the cycle index for cyclobutadiene con-
siders the symmetry elements (proper rotation axes) indi-
cated in Figure 3, with the permutations and cycle index
terms presented in Table 16. The cycle index for cyclobutadi-
ene is:

Z = 35t + 353 + 25t} + 259) (86)

In order to obtain the number of cyclobutadiene substitution
isomers with formula C4H4_; X the following substitution is
made in equation (86):

=+ (87)

Figure 3 The symmetry axes of square cyclobutadiene
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Table 16 The Generation of the Cycle Index for Cyclobutadiene

Table 17 The Generation of the Cycle Index of Benzene

Symmetry Cycle index Symmetry Cycle index

operation 1234 Permutation term operation 123456 Permutation term
E @) 1234 (H2)3)E) s‘}‘ E (a) 123456 (D)B)AENS5)6) 58
gg ?8 ‘2‘ ; i ? 8‘2‘;21; 53 Ct (b) 234561 (123456) s)
4 S4 - 1
Cs (©) 3412 (13)(24) 5 C, (b) 612345 (165432) S6
C; (d) 2143 (12)(34) 52 CT (0) 345612 (135)(246) 52
Cy (d) 4321 (14)(23) §%| C3 (©) 561234 (153)(264) 53
C, (e) 1432 (DH(3)(24) $18; 3
s (o) 3214 2)@)(13) sfx; C, (d) 456123 (14)(25)(36) $
C, (e) 216543 (12)(36)(45) 53
' - _ _ G, (e) 654321 (16)(25)(34) 5
This substitution gives the counting polynomial: Cs (e) 432165 (14)(23)(56) 53
Z =1 +0% 4301+ 27 +2(1 + 021 +2) + 200 +2*)] 2%0) 165432  (1)(#)(26)35) 5183
2.2

x4 88) C; 321654 (2)(5)(13)(46) 3;3;

C: (B 543216 3)(6)(15)(24) ey

The coefficient of each term in equation (88) gives the number
of isomers substituted with a number of X groups equal to
the exponent of the respective term. Therefore, cyclobutadiene
has one unsubstituted isomer, one monosubstituted isomer,
two disubstituted isomers, one trisubstituted isomers, and one
tetrasubstituted isomer.

The benzene cycle index derivation considers the symmetry
elements indicated in Figure 4, corresponding to the permuta-
tions and cycle index terms presented in Table 17.

The cycle index for benzene is:

= Ls§ + 25§ + 253 + 453 + 35153) (89)

The number of benzene substitution isomers with formula
CeH¢_i X is obtained by substituting equation (87) in the
cycle index for benzene, equation (89). This substitution gives
the counting polynomial:

Z = 5[+ 08 +2(1 +x°) +2(1 + £°Y
+4(1+ 22 +30 + 021+ 1)
=1+4x+3% 432 + 3% +2° + 26 (90)
showing that benzene has one unsubstituted isomer, one mono-

substituted isomer, three disubstituted isomers, three trisubsti-
tuted isomers, etc.

Naphthalene has eight sites of substitution in order to
generate isomers with molecular formula CigHg_;X,. The
corresponding cycle index is:

Z =13 +3s3) o

Figure 4 The symmetry axes of benzene

In order to count the number of naphthalene isomers containing
13C carbon atoms one has to consider that there are 10 possible
sites for substitution of 12C with '3C, giving the cycle index:

Z =110+ 283 + 5is3 (92)
The cycle index of the fullerene Cgo (/1) is:
Z = L8 + 24587 + 20530 + 1583°) (93)

The number of CgnX, isomers of the fullerene Ceo (/1)
computed with the cycle index given in equation (93) is
presented in Table 18 for n up to 10.

The Pélya method is widely used for enumeration of
various classes of isomers: benzenoid hydrocarbons, sub-
stituted benzenoid hydrocarbons, alkanes,**50 cycloalkanes,
isotopically labeled compounds, porphyrins, adamantane and
its valence isomers, valence isomers of annulenes, dodeca-
hedrane, fullerene isomers, nuclear-spin statistics, and ESR
hyperfine patterns.

Numerous papers have been publishe on the enu-
meration of polycyclic aromatic compounds (benzenoids, poly-
hexes). Of considerable help in such enumerations are dualist
graphs,3! consisting of vertices situated in the centers of ben-
zenoid rings and straight lines connecting vertices in adjacent
hexagons. Unlike usual graphs, angles between edges are sig-
nificant in dualist graphs. Three types of benzenoids lead to
distinet enumerations: if helicemic systems are allowed, for-
mulas for enumerations are simpler than when strictly planar
benzenoids are considered; the third type of benzenoids con-
sists of those with ‘holes’; these benzenoids are called coro-
noids. Using the boundary edges code, the latest enumeration

d23,5| =54

Table 18 The Number of Isomers CgoX,, of the Fullerene Cgo
(n)

n Number of isomers n Number of isomers
1 1 2 37
3 577 4 8236
5 91030 6 835476
7 6436782 8 42650532
9 246386091 10 1256602779
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by Caporossi and Hansen of strictly planar benzenoids has
counted isomers with up to 21 hexagons, whose number is
over 102,

Isomers of diamond hydrocarbons (polymantanes) have
been enumerated using graph-theoretical methods.>® Staggered
rotamers (conformers) of linear and branched alkanes may
also be enumerated.3¢ Interestingly, the numbers of isomers of
benzenoids, polymantanes, and staggered n-alkane conformers
are related with some restrictions.5’

16 CONCLUSIONS AND OUTLOOK

Molecular formulas of many inorganic compounds and of
all organic compounds (more than 15 million up until 1997)
are equivalent to nondirected graphs, in which vertices sym-
bolize atoms and edges symbolize covalent bonds, i.e., elec-
tron pairs shared by two atoms. Such formulas and graphs
convey much information on substances. Chemical informa-
tion services allow immediate access to bibliographic and
physicochemical data via connectivity tables, or directly from
hydrogen-depleted structures or molecular fragments. Thus
chemistry is the best documented science for such types of
queries based on structures because one obviates ambiguities
or redundancies contained in words, codes, or nomenclature.

The IUPAC (von Baeyer) nomenclature of bridged poly-
cylic compounds is based on the graph-theoretical cyclomatic
number, i.e., the smallest number of bonds that have to be
cut in order to convert the structure into an acyclic one; this
number is equal to the number of edges, minus the number of
vertices, plus one.

Whereas molecular formulas allow an alphanumerical ord-
ering of all known substances (which is essential for retrieval
of information), isomerism complicates the picture. For consti-
tutional isomerism, graph-theoretical and computational meth-
ods allow enumeration and generation of all such isomers;
their ordering may be effected according to various criteria.
Connectivity tables or adjacency matrices allow easy input
and retrieval of structures. Adjacency matrices are familiar to
chemists because they were first applied in Hiickel molecu-
lar orbital (HMO) theoretical calculations. For stereoisomers,
the enumeration, storage, and retrieval of information is also
possible, but absolute configurations of chiral compounds are
still only partly known. Purely graph-theoretical (topological)
methods have to be supplemented with geometrical informa-
tion for diastereoisomers, whereas enantiomers require special
approaches.

Graph-theoretical invariants (so-called topological indices)
which are associated with constitutional isomers allow quanti-
tative structure—property and structure-activity relationships,
the latter being especially important in drug design. Vari-
ous other types of matrices can be associated with molecular
graphs, in addition to adjacency matrices. The distance matrix
is the most important one because it can be used for including
information on heteroatoms and multiple bonding.

Graphs can be associated not only as described above with
molecules (‘molecular graphs’), but also with ensembles of
molecules. In ‘reaction graphs’, vertices symbolize molecules
or intermediates, and edges symbolize elementary reaction
steps. For computer-assisted design of organic syntheses, all
possible sequential disconnections of the target molecule result
in a graph. ‘Synthon graphs’ are associated with the reverse

problem of assembling synthons into the target molecule.
Directed graphs are used in solving problems of chemical
kinetics when complicated reaction sequences (some of which
may be reversible or irreversible) are involved.

Molecular graph polynomials which can be obtained from
matrices associated with molecular graphs provide useful
information, e.g., on the number of Kekulé structures in poly-
cyclic aromatic compounds. Spectra of graphs are the corre-
sponding eigenvalues, and these may be associated with energy
levels as in HMO theory, or with structural invariants.

Although until now chemical graphs have been mostly used
for problems connected with enumeration and generation of
constitutional isomers, lately an increasing interest has devel-
oped in extending these approaches to problems involving
stereochemical problems, due also to developments involving
carbon cage compounds.
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