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Glossary14

Ant colony optimization Ant colony optimization15

(ACO) is an agent-based algorithm procedure in-16

spired by the function of ant colonies and their search17

for the optimum path to food sources. The virtual18

agents are called artificial ants or ants, and the opti-19

mization problem is represented as a trail-and-error20

search for the optimum path on a weighted graph. The21

pheromone that is deposited by ants on the trail is22

represented as weights for graph components (vertices23

or edges). Each ant generates a solution by moving24

on the graph and by selecting the next step based25

on the pheromone level. The pheromone level is up-26

dated after each cycle (when all ants found a solution)27

by adding a pheromone quantity proportional to the28

quality of the solutions to which it belongs.29

Antigen An antigen is a molecule (chemical compound,30

protein or polysaccharide) that induces an immune re-31

sponse. Each pathogen contains specific antigens that32

are recognized by the immune system. The antigen re-33

gion that is recognized by the immune system is called34

an epitope.35

Antibody An antibody (or immunoglobulin) is a pro-36

tein used by the immune system to identify bacteria,37

viruses and other pathogens or foreign molecules. The38

antibody region that binds antigens is extremely vari-39

able, thus allowing the immune system to recognize40

a large diversity of pathogens. The ability to recognize41

antigens is improved through successive cycles of anti-42

gen presentation, antibody cloning, and hypermuta-43

tion of the variable region of the antibody.44

Artificial immune systems Artificial immune systems 45

(AIS) represent a class of optimization algorithms 46

inspired by the components and mechanisms of the 47

biological immune system. AIS simulate the learning 48

and memory capabilities of the immune system to 49

develop computational algorithms for pattern recog- 50

nition, function optimization, classification, process 51

control, and intrusion detection. 52

Genetic algorithms Genetic algorithms (GA) solve high- 53

dimensional problems through a Darwinian evolution 54

of a population of individuals, in which each individual 55

(chromosome) represents a possible solution. Depend- 56

ing on the type of the optimization problem, chromo- 57

somes may represent the solution in a binary, continu- 58

ous, or hybrid encoding. Each chromosome has a fit- 59

ness value that measures the quality of the solution. 60

A population of parents evolves to a generation of chil- 61

dren by crossover and mutation. 62

Particle swarm optimization Swarm intelligence (SI) 63

represent a group of distributed intelligence algo- 64

rithms that solve optimization problems by applying 65

processes inspired by swarming, herding, and flocking 66

of various species. Particle swarm optimization (PSO) 67

simulates the swarming behaviors observed in swarms 68

of bees, flocks of birds, or schools of fish. PSO con- 69

siders a swarm of particles that start from a random 70

position and have a random velocity. At each step 71

a particle moves to a new position that is determined 72

by its own experience (the best past position) and by 73

thememory of the best particle in the swarm. PSOmay 74

be applied to both binary and continuous optimization 75

problems, and its main strength is a fast convergence. 76

Quantitative structure-activity relationships 77

Quantitative structure-activity relationships (QSAR) 78

represent regression models that define quantita- 79

tive correlations between the chemical structure of 80

molecules and their physical properties (boiling point, 81

melting point, aqueous solubility), chemical properties 82

and reactivities (chromatographic retention, reaction 83

rate), or biological activities (cell growth inhibition, 84

enzyme inhibition, lethal dose). The fundamental 85

hypotheses of QSAR is that similar chemicals have 86

similar properties, and small structural changes result 87

in small changes in property values. The general form 88

of a QSAR equation is P(i) D f (SDi ), where P(i) is 89

a physical, chemical, or biological property of com- 90

pound i, SDi is a vector of structural descriptors of i, 91

and f is a mathematical function such as linear regres- 92

sion, partial least squares, artificial neural networks, or 93

support vector machines. A QSAR model for a prop- 94

erty P is based on a dataset of chemical compounds 95
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2 Drug Design, Artificial IntelligenceMethods in

with known values for the property P, and a matrix of96

structural descriptors computed for all chemicals. The97

learning (training) of the QSAR model is the process98

of determining the optimum parameters of the re-99

gression function f . After the training phase, a QSAR100

model may be used to predict the property P for novel101

compounds that are not present in the learning set of102

molecules.103

Structural descriptor A structural descriptor (SD) is104

a numerical value computed from the chemical struc-105

ture of a molecule, which is invariant to the number-106

ing of the atoms in the molecule. Structural descriptors107

may be classified as constitutional (counts of molecu-108

lar fragments, such as rings, functional groups, or atom109

pairs), topological indices (computed from the molec-110

ular graph), geometrical (volume, surface, charged-111

surface), quantum (atomic charges, energies of molec-112

ular orbitals), and molecular field (such as those used113

in CoMFA, CoMSIA, or CoRSA).114

Structure-activity relationships Structure-activity rela-115

tionships (SAR) represent classification models that116

can discriminate between sets of chemicals that be-117

long to different classes of biological activities, usually118

active/inactive towards a certain biological receptor.119

The general form of a SAR equation is C(i) D f (SDi ),120

where C(i) is the activity class of compound i (ac-121

tive/inactive, inhibitor/non-inhibitor, ligand/non-lig-122

and), SDi is a vector of structural descriptors of i, and f123

is a classification function such as k-nearest neigh-124

bors, linear discriminant analysis, random trees, ran-125

dom forests, Bayesian networks, artificial neural net-126

works, or support vector machines.127

Definition of the Subject128

Drug design and development represents a complex and129

expensive process that is based on the creative applica-130

tion of scientific results from various disciplines, includ-131

ing genomics, chemistry, biology, computational chem-132

istry, pharmacology, toxicology, and clinical studies. The133

average cost of bringing a new drug to market is cur-134

rently around US$800 million, with a large part of the135

cost coming from chemical compounds that fail in differ-136

ent stages of development. Computational simulation of137

biochemical processes may guide the drug discovery pro-138

cess through reliable in silico models of biochemical prop-139

erties (aqueous solubility, octanol-water partition, intesti-140

nal absorption, blood-brain barrier transport, excretion),141

prediction of enzyme-ligand interactions, simulations of142

cells, tissues and organisms. In this chapter we review143

the most important applications of artificial intelligence 144

in structure-activity relationships (SAR) and quantitative 145

structure-activity relationships (QSAR). These techniques 146

are used in different stages of drug design, including 147

large scale screening of chemical libraries, optimization of 148

protein-ligand interactions, modeling the drug transport 149

through membranes, prediction of drug metabolism, mu- 150

tagenicity, and carcinogenicity. The common goal of ar- 151

tificial intelligence applications in computer-assisted drug 152

design is to identify the best candidates in each step, which 153

may eventually lead to reduced costs for the development 154

new drugs. 155

Introduction 156

Biology is a rich source of inspiration for developing algo- 157

rithms that solve complex problems by emulating mech- 158

anisms and functions of biological systems. Well-known 159

examples of biologically inspired algorithms are artificial 160

neural networks, genetic algorithms, ant colony optimiza- 161

tion, DNA computing, particle swarm optimization, and 162

artificial immune systems. 163

Evolutionary algorithms represent a family of stochas- 164

tic methods that solve optimization problems by evolv- 165

ing solutions based on Darwinian evolution and concepts 166

of DNA genetics (for details on GA and evolutionary al- 167

gorithms, see “Genetic and Evolutionary Algorithms and 168

Programming”) CE2 . The main algorithms from this class 169

are genetic algorithms (GA), genetic programming (GP), 170

and evolutionary programming (EP). The major princi- 171

ples of genetic algorithms were developed by Holland [1], 172

and then further developed by Goldberg [2]. Many ap- 173

plications of chemoinformatics and computational chem- 174

istry have a large search space that must be explored to 175

locate the solution. Usually, the brute-force grid search 176

approach cannot be applied but for small systems, and 177

various stochastic methods were developed to find near- 178

optimal solutions. Several examples of high-dimensional 179

problems are the prediction of the biopolymer struc- 180

ture from sequence (peptides, proteins, DNA, RNA), pro- 181

tein-protein docking, protein-ligand docking, conforma- 182

tional search, geometry optimization, design of chemical 183

libraries, and design of chemical compounds with special 184

physico-chemical and biological properties. For other GA 185

applications in chemistry and biology see the reviews by 186

Jones [3], Terfloth [4], and von Homeyer [5]. The most 187

important GA applications in drug development are re- 188

viewed in Sect. “Genetic Algorithms”. 189

Dorigo and co-workers developed the ant colony opti- 190

mization (ACO) algorithm tomimic the foraging behavior 191

of some ant species [6,7,8,9,10]. The main featuremodeled 192

CE2 Please confirm change.
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Drug Design, Artificial IntelligenceMethods in 3

in ACO is the ability of an ant population to find the short-193

est path to a food source using as guide the pheromone194

trace that is deposited on the path explored by each indi-195

vidual ant. The pheromone accumulates on paths explored196

more frequently by ants, which indicates that the paths197

are shorter routes to the food source. ACO has numerous198

applications, mainly in combinatorial optimization, when199

their ability to explore large solutions spaces is a clear ad-200

vantage. For theoretical details and applications of agent201

based simulation, see� Agent Based Modeling and Simu-202

lation, � Agent Based Modeling Formalisms, Mathemat-203

ics of, � Agent Based Modeling and Agent Based Mod-204

eling Platforms, Design of, � Agent Based Modeling and205

Artificial Life, and � Agent Based Modeling and System206

Biology. In Sect. “Ant Colony Optimization” we present207

an overview of ACO applications in drug design.208

The particle swarm optimization (PSO) algorithm pro-209

posed by Kennedy and Eberhart is inspired by the social210

behavior of large groups of individuals, such as bird flock-211

ing, fish schooling, and animal herding [11]. Each indi-212

vidual of the group, represented as a particle that moves213

with a particular velocity through the search space, is a so-214

lution for the optimization problem. The movement of215

each particle is determined by the best position visited216

by the particle, and the best position found by the group.217

The balance between a local and a global search is intro-218

duced by weighting the attraction of the best solution of219

the particle and the best solution of the swarm (for more220

details on the PSO algorithms, see � Swarm Intelligence221

and �Multi-agent Systems: Swarms). PSO converges fast222

and may be used with success to explore high dimensional223

spaces. The algorithm is simple, with a small number of224

parameters, and the large number of variants proposed225

in the literature is a sign of the great interest and vigor-226

ous research in this field [12,13]. Swarm intelligence al-227

gorithms are used in drug design for diverse application,228

including gene expression [14], enzyme-inhibitor dock-229

ing [15], selection of structural descriptors for QSARmod-230

els [16], QSAR with support vector machines optimized231

with PSO [17], and modeling enzyme inhibitors with arti-232

ficial neural networks trained with PSO [18]. Themost im-233

portant PSO applications in drug discovery are presented234

in Sect. “Particle Swarm Optimization”.235

The immune system protects an organism against236

infection by identifying and killing pathogens. Recog-237

nition cells known as B-cells and T-cells identify the238

pathogens that enter into the human body. Receptors239

situated on the surface of the B-cells and T-cells rec-240

ognize and bind proteins and protein fragments from241

pathogens, thus forming high affinity antigen-antibody242

complexes. The learning and memory capabilities of the243

biological immune system are used in a novel class of 244

machine learning algorithms, the artificial immune sys- 245

tems (AIS) [19,20,21,22,23,25,26,27] (for further details 246

on AIS see � Immunecomputing. The major AIS al- 247

gorithms and the most important applications are pre- 248

sented in several books and conference proceedings: Ar- 249

tificial Immune Systems and Their Applications edited by 250

Dasgupta [28]; Artificial Immune Systems: A New Com- 251

putational Intelligence Approach by de Castro and Tim- 252

mis [29]; Immunocomputing: Principles and Applications, 253

by Tarakanov, Skormin, and Sokolova [30]; Immunity- 254

Based Systems by Ishida [31]; Artificial Immune Systems: 255

ICARIS 2003 edited by Timmis, Bentley and Hart [32]; Ar- 256

tificial Immune Systems: ICARIS 2004 edited by Nicosia, 257

Cutello, Bentley, and Timmis [33]; Artificial Immune Sys- 258

tems: ICARIS 2005 edited by Jacob, Pilat, Bentley, and 259

Timmis [34]; Artificial Immune Systems: ICARIS 2006 260

edited by Bersini and Carneiro [35]. 261

AIS models were successfully applied to biological and 262

medical problems, such as classification of gene expres- 263

sion data [36,37,38], identification of breast cancer [39], 264

diagnosis of lung cancer [40], recognition of ECG arrhyth- 265

mia [41], and interpretation of carotid artery Doppler sig- 266

nals [42]. Protein structure prediction starting from the 267

amino acids sequence is a difficult and computationally 268

intensive task, which was investigated with AIS for mod- 269

els based on Dill’s hydrophobic-hydrophilic lattice ap- 270

proach [43] and with three-dimensional models [44]. In 271

Sect. “Artificial Immune Systems” we present a review of 272

the AIS applications in drug design and toxicology. 273

Genetic Algorithms 274

Compared with other families of artificial intelligence al- 275

gorithms, evolutionary algorithms are by far themost pop- 276

ular, with the largest number of publications and with 277

the most diverse applications. GA methods are applied 278

with success to solve diverse drug design problems, such 279

as protein-ligand docking [45], structure-based drug de- 280

sign [46], global optimization of QSAR models based on 281

artificial neural networks [47], computer-aided molecular 282

design [48,49], design of combinatorial libraries [50], and 283

feature selection in QSAR models [51,52]. All these prob- 284

lems are difficult to solve thorough a brute force approach 285

due to the huge search space, but GA are very efficient in 286

finding their global optimum with modest computational 287

resources. 288

Evolutionary algorithms are applied with success 289

in computer-aided molecular design [48,49] to gener- 290

ate novel molecules with prescribed physical, chemical, 291

or biological properties. In pharmaceutical applications, 292
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Drug Design, Artificial Intelligence Methods in, Figure 1
General formula for a family of chemical compounds (1) thatmay
be encodedwith chromosomes having four elements, and an ex-
ample of molecule (2) from this family

molecular design is focused on discovering chemical struc-293

tures that can satisfy all requirements of a successful294

drug, such as affinity and selectivity for the biological295

target, and good ADME-Tox (absorption, distribution,296

metabolism, excretion, and toxicity) properties. The most297

important part of any molecular design application is298

a proper encoding of the molecular structure into a chro-299

mosome. A straightforward translation of chemicals may300

be achieved if the molecule can be partitioned into a con-301

stant skeleton and a series of substituents, such as the fam-302

ily of chemical compounds 1 (Fig. 1) that has four sub-303

stituents R1, R2, R3, and R4. Each molecule from this fam-304

ily may be encoded by a chromosome with four elements305

(/R1/R2/R3/R4/), with each element recording the index of306

the respective substituent. Each substitution position has307

a set of allowed substituents encoded with numbers. For308

example, compound 2 is represented by the chromosome309

/3/5/3/1/.310

Using this molecular encoding, one can easily de-311

fine the GA operations of crossover and mutation. The312

crossover operation involves the exchange of substituents313

between two parent molecules. For example, parent314

molecules 3 and 4 generate child molecules 5 and 6 by ex-315

changing substituents R3 and R4 (Fig. 2).316

The chemical space is also explored with the sub-317

stituent mutation, as shown in Fig. 3: parent molecule 7318

generates child molecule 8 by mutating R4, and parent 319

molecule 9 generates child molecule 10 by mutating R1. 320

These examples demonstrate the encoding and evolution 321

of chemical structures in combinatorial libraries of chem- 322

ical compounds [53,54]. The progress in combinatorial 323

chemistry [55,56], virtual screening of chemical libraries, 324

and high throughput techniques dramatically increased 325

the chemical space that can be explored in the quest for 326

molecules with special properties (peptides, nucleic acids, 327

catalysts, pesticides, drugs). Due to the huge chemical 328

space that can be generated through combinatorial chem- 329

istry, it is rarely possible to perform an exhaustive syn- 330

thesis of all possible chemical species. Instead, GA imple- 331

mentations are used to guide the chemical synthesis to- 332

wards regions containing molecules with target proper- 333

ties [57,58]. 334

An efficient class of reactions that may generate large 335

combinatorial libraries is the Ugi multicomponent reac- 336

tion (MCR) [59]. Ugi MCRs are one-pot reactions in 337

which three reactants (Fig. 4; U-3CR), four reactants 338

(Fig. 5; U-4CR), or more reactants are converted into the 339

corresponding product without separation and purifica- 340

tion of the intermediates. The diversity of chemical struc- 341

tures generated thorough MCR reactions comes from the 342

diversity of the groups R from reactants. Using available 343

chemicals, one can design chemical libraries that are too 344

large to synthesize. Instead, a sample of the combinatorial 345

library is synthesized and evaluated in biological assays, 346

followed by an in silico exploration based on GA mod- 347

els [60]. If each reactant type in an U-3CR is a set of 1000 348

different chemical compounds, then the complete library 349

has 109 distinct molecular structures. Similarly, an U-4CR 350

library generated from four sets of 1000 chemicals each 351

consists of 1012 distinct compounds. It becomes apparent 352

that the vast chemical space available through combinato- 353

rial synthesis is too large even for the in silico exploration, 354

which explains why evolutionary algorithms are used to 355

guide the chemical synthesis. 356

The GA translation of MCR reactions and other com- 357

binatorial libraries is straightforward, and in many cases 358

the in silico exploration of the chemical space may be per- 359

formed with standard GA software. This approach has 360

limitations, because the size of the chemical space is fixed 361

by the initial sets of reactants, and the common skele- 362

ton remains constant during the simulation. Graph-based 363

GA models solve these limitations by generating molec- 364

ular structures that are not programmed in the starting 365

building blocks. Such GA systems have crossover and mu- 366

tation procedures that operate directly on the molecular 367

graph [61], and define a chromosome structure capable to 368

encode a molecular graph [62]. The graph-based GA sys- 369
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Drug Design, Artificial Intelligence Methods in, Figure 2
Example of molecule crossover: parent molecules 3 and 4 generate child molecules 5 and 6 by exchanging substituents R3 and R4
(see molecule 1)

Drug Design, Artificial Intelligence Methods in, Figure 3
Examples of molecule mutation: parent molecule 7 generates child molecule 8 by mutating R4, and parent molecule 9 generates
child molecule 10 bymutating R1

Drug Design, Artificial Intelligence Methods in, Figure 4
Example of Ugi 3-component reactions (U-3CR)

tem proposed by Brown et al. introduces novel crossover370

and mutation operations for molecular graphs [62] in371

order to solve the inverse QSAR problem, i. e., to de-372

sign new chemicals starting from structure-activity mod-373

els [63]. Four mutations operate on atoms (graph nodes),374

namely append, prune, insert, and delete (Fig. 6; the site of 375

the transformation is indicated with an arrow). The ap- 376

pend mutation adds an atom and its chemical bond to 377

the molecular graph (11!12). The connecting atom is se- 378

lected at random from the set of atoms in the molecule 379
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6 Drug Design, Artificial IntelligenceMethods in

Drug Design, Artificial Intelligence Methods in, Figure 5
Examples of Ugi 4-component reactions (U-4CR)

Drug Design, Artificial Intelligence Methods in, Figure 6
Examples of the node mutation operators: 11!12, append,
13!14, prune, 15!16, insert, and 17!18, delete

Drug Design, Artificial Intelligence Methods in, Figure 7
Examples of the edge mutation operators: 19!20, substitute,
21!22, add, and 23!24, delete
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Drug Design, Artificial Intelligence Methods in, Figure 8
Example of the multiple crossover: 25 and 26, parent molecules;
27 and 28, disconnected subgraphs of 25; 29 and 30, discon-
nected subgraphs of 26; 31, child molecule generated from sub-
graphs 27 and 30; 32, child molecule generated from subgraphs
29 and 28

that have available valences. The type of the connect-380

ing bond is randomly selected from the possible types381

for the two atoms. The prune mutation removes a ter-382

minal atom from the molecular graph (13!14). The in-383

sert mutation selects a bond in the molecular graph, cuts384

it and inserts a molecular fragment between the two dis-385

connected atoms (15!16). The molecular fragment is se-386

lected from a library, and may consist of a single atom or387

a more complex subgraph. Additional tests are performed388

to ensure that the final chromosome (molecular graph) is389

a valid chemical structure. The delete mutation selects an390

atom at random, removes it and reconnects the molecu-391

lar graph (17!18). The edge mutations operate on the set392

of edges in a chromosome (Fig. 7; the site of the transfor-393

mation is indicated with an arrow). The substitute muta-394

tion selects randomly an edge and then replaces changes395

its type to another bond type (19!20). The mutation396

result must correspond to a correct chemical structure.397

The add mutation adds a new bond between two atoms398

(21!22), thus making possible the generation of cyclic399

structures. Finally, the delete mutation deletes a bond that400

Drug Design, Artificial Intelligence Methods in, Figure 9
Example of the subgraph crossover: the first parent molecule 33
and its two induced connected subgraphs34 and 35; the second
parentmolecule36 and its two induced connected subgraphs 37
and 38; the first childmolecule 39 generated from subgraphs 34
and 37; the second childmolecule 40 generated from subgraphs
35 and 38

was randomly selected (23!24). The resulting chromo- 401

some must represent a connected molecular graph. Two 402

crossover mutations are defined for molecular graphs, i. e., 403

multiple crossover and subgraph crossover. The multiple 404

crossover starts from two parent molecules, then each par- 405

ent molecule is disconnected into two subgraphs, and fi- 406

nally, two child molecules are generated by swapping sub- 407

graphs from the parentmolecules (Fig. 8). Parentmolecule 408

25 generates subgraphs 27 and 28, and parent molecule 26 409

generates subgraphs 29 and 30. The crossover operation 410

generates child molecule 31 from subgraphs 27 and 30, 411

and then assembles child molecule 32 from subgraphs 29 412

and 28. In the subgraph crossover a connected subgraph is 413

selected in each parent molecule, and then the subgraphs 414

are combined to obtain the first child molecule (Fig. 9). 415

The combination of the two fragments tries to retain the 416

topology of the two subgraphs. In the second step a dif- 417

ferent subgraph is induced in each parent molecule, and 418

the two subgraphs form the second child molecule. The 419

parent molecule 33 generates the induced connected sub- 420

graphs 34 and 35; and the second parent molecule 36 gen- 421

erates the induced connected subgraphs 37 and 38. The 422

first childmolecule 39 is obtained by combining subgraphs 423

34 and 37, and the second child molecule 40 is obtained 424

from subgraphs 35 and 38. The main advantage of the 425

graph-based GA system is its ability to explore chemical 426

structures that are not related to the starting molecules, 427

and to discover novel chemical topologies. 428
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8 Drug Design, Artificial IntelligenceMethods in

Virtual Screening of Chemical Libraries429

QSAR models are very useful tools for the identification430

of structural features that determine various molecular431

properties, and may even suggest the mechanism of ac-432

tion for biochemical processes. Thus, QSAR models start433

from structure and correlate descriptors with molecular434

properties. Once a QSAR model is established, an in-435

verse process becomes possible, namely setting a target436

value for a molecular property and then finding all pos-437

sible chemical structures that might exhibit that property438

value, within a certain range of variation. This process in439

called inverse QSAR, and it represents an important step440

in optimizing the drug-like properties of chemical com-441

pounds. Lewis proposed an inverse QSAR strategy that442

may assist medicinal chemists in deciding how to opti-443

mize a library of chemical compounds [64]. The starting444

point is a dataset of chemical compounds with a molecular445

property, and a corresponding QSAR model. The inverse446

QSAR strategy involves an iterative application of several447

steps, namely generation of new structures, structure fil-448

tering based on synthetic feasibility or undesired proper-449

ties, and QSAR filtering. The first step generates a new450

chemical library by applying simple chemical transforma-451

tions to the molecules from the initial dataset. Examples of452

such transformations are modification of the bond order,453

adding or removing an atom, adding or removing a frag-454

ment, or changing C to N or O. The second step filters455

molecules that have nonspecific reactivity, such as elec-456

trophiles, nucleophiles, acylating agents, or redox systems.457

Synthetic feasibility rules are used to eliminate compounds458

that are difficult to synthesize or those that are expensive.459

Finally, QSAR models are used to select candidates for460

chemical synthesis. The inverse QSAR strategy developed461

by Lewis was tested for a combinatorial library of 150 in-462

hibitors of human carbonic anhydrase II, that was used to463

develop a MLR genetic function approximation QSAR, as464

implemented in Cerius2. The best QSAR model is based465

on five structural descriptors: TS3466

pIC50 D 7:5 � 0:6PHI � 5:7Jurs-RPCG C 0:2SdsN
C 1:7NaaS C 0:001Vm

n D 150r2 D 0:81q2LOO D 0:80F D 127

467

where PHI is the molecular flexibility index, Jurs-RPCG468

is the charge of the most positive atom divided by the total469

positive charge, SdsN is the E-state index for sp2 N, NaaS is470

the electrotopological count for aromatic S, and Vm is the471

molecular volume inside the contact surface. This QSAR472

was used as the starting point for performing automated473

property optimization.474

Ant ColonyOptimization 475

The classical ACO algorithm was successfully modified 476

and adapted in numerous variants to solve specific prob- 477

lems from chemistry and drug design. By far the most im- 478

portant application is represented by the feature selection 479

for QSAR models [65,66]. Several ACO implementations 480

were tested in diverse QSAR models, including multi-lin- 481

ear regression, artificial neural networks, and regression 482

trees. Clustering is routinely used to discover novelty in 483

large chemical datasets, based on structural similarities 484

measured by molecular descriptors. Since similar chemi- 485

cals usually have similar properties, clustering may suggest 486

groups of molecules that interact with the same biologi- 487

cal target. Shelokar et al. proposed a clustering algorithm 488

based onACO assignment of objects in clusters [67].Many 489

biochemical problems require optimization of continuous 490

variables, whereas the classical ACO implementation op- 491

timizes discrete variables. He et al. demonstrated an ACO 492

extension to continuous variables that may be applied to 493

identify optimum parameters for QSARmodels [68]. Korb 494

and co-workers introduced a new protein-ligand docking 495

algorithm, PLANTS (Protein-Ligand ANT System), which 496

uses ACO to find a minimum energy conformation for the 497

protein-ligand complex [69]. Compared with docking al- 498

gorithms based on GA, PLANTS is faster and finds a larger 499

number of good solutions. 500

Izrailev and Agrafiotis used an ACO approach to iden- 501

tify the best regression tree models in QSAR [65]. Each 502

ant represents a regression tree, and the pheromone trail 503

is obtained from a reference tree that represents the topo- 504

logical union of all ant trees simulated. The ACO selection 505

of regression trees was evaluated for three QSAR datasets, 506

namely the antifilarial activity of antimycin analogues, the 507

binding affinities of ligands to benzodiazepine/GABAA re- 508

ceptors, and the inhibition of dihydrofolate reductase by 509

pyrimidines. Each simulation generated 2000 ant trees and 510

then the tree with the best cross-validation predictions was 511

selected as solution. For all three QSAR datasets the ant 512

tree results were significantly better than those obtained 513

with recursive partitioning and with random trees. Using 514

the same three QSAR datasets, Izrailev and Agrafiotis pro- 515

posed an ACO procedure (ANTSELECT) for feature se- 516

lection in artificial neural networks QSAR [66]. A num- 517

ber of 100 independent ANTSELECT simulations were 518

performed for each QSAR dataset, with each simulation 519

containing a population of 2000 ants. Structural descrip- 520

tors are represented as graph vertices, and an ant gener- 521

ates a path by visiting a number of vertices. All vertices 522

on the path represent the selected structural descriptors 523

that are subsequently used as input to an artificial neu- 524

TS3 Please check the label of the following equations.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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ral network. Features that give good QSAR models re-525

ceive a larger quantity of pheromones, thus having greater526

chances to be selected in subsequent iterations. The QSAR527

results indicate that the ANTSELECT algorithm provides528

good solutions if the simulations use a sufficient number529

of ants to evaluate all features in different combinations.530

A second requirement is to have a pheromone accumula-531

tion that distinguishes between good and bas features. Ar-532

tificial neural networks are sensitive to the input features,533

and ANTSELECT provides sets of descriptors that result534

in models with good predictive power.535

Nonsteroidal antiinflammatory drugs (NSAID) treat536

inflammation and pain by inhibiting both cyclooxy-537

genase-1 and cyclooxygenase-2 (COX2). NSAID have se-538

rious side effects, such as gastrointestinal ulceration and539

bleeding, but the observation that acute and chronic540

inflammation correlates with higher levels of COX2541

prompted several drug design studies to identify selective542

COX2 inhibitors. Shen proposed a novel ACO procedure543

for feature selection in a QSAR study of 42 COX2 in-544

hibitors [70]. Starting from 85 structural descriptors, the545

simulation used 100 ants and 200 iterations to select 3 de-546

scriptors for the optimum model. The ACO procedure se-547

lected a better set of descriptors, compared with a selection548

made with an evolutionary algorithm.549

The drug binding to human serum albumin (HSA) de-550

termines its bioavailability, pharmacokinetics, and thera-551

peutic effect.Many drugs are transported byHAS, but only552

the free drug has pharmacological effect. Gunturi et al.553

modeled the HAS binding of 94 diverse drugs starting554

from a pool of 327 structural descriptors [71]. Since the555

number of descriptors is too large for amulti-linear regres-556

sion QSAR, an ACO procedure was implemented to select557

those features that determine HSA binding. The ACO so-558

lutions were cross-validated, and the best QSAR equations559

with five and six descriptors were selected as final models.560

The importance of each descriptor was evaluated by the561

frequency of selection in QSAR models, and it was found562

that HAS binding depends on hydrophobic interactions,563

solubility, size, and shape.564

Tyrosine kinases are enzymes that transfer a phosphate565

group from ATP to a tyrosine residue in a protein. These566

enzymes have important functions in diverse cellular pro-567

cesses, such as metabolism, differentiation, growth, apop-568

tosis. Shi et al. developed QSAR models for inhibitors of569

the epidermal growth factor receptor (EGFR), a cell-sur-570

face receptor from the tyrosine kinase family [72]. Muta-571

tions affecting EGFR expression or activity could result in572

cancer. The structure of the 61 EGFR inhibitors was en-573

coded with 50 structural descriptors, and ACOwas used to574

select relevant groups of descriptors. The ant population575

had 100 individuals trained for 200 iterations. The anal- 576

ysis of the descriptors selected with higher frequency by 577

ants reveals the importance of electronic indices, and sug- 578

gest that electron-donating groups increase the activity of 579

these EGFR inhibitors. 580

The ability to distinguish between foreign and self pro- 581

teins is one of the most important characteristics of the 582

immune system. The major histocompatibility complex 583

(MHC) molecules bind short peptides resulting from in- 584

tracellular processing of foreign and self proteins. The 585

MHC molecule loaded with the peptide migrates to the 586

cell surface where it interacts with T-cell receptors. There 587

are two classes of MHCmolecules: (a) MHC class I, which 588

binds peptides derived from endogenously expressed pro- 589

teins and (b) MHC class II, which binds peptides de- 590

rived mainly from exogenous or transmembrane proteins. 591

Karpenko et al. devised a novel procedure to predict pep- 592

tides that bind to MHC II, by using ACO to identify 593

the optimum alignment of a set of variable length pep- 594

tides [73]. The multiple alignment of all peptides is then 595

utilized to compute a position specific scoring matrix. 596

This matrix assigns different weights to each position and 597

amino acid type, and provides a score for each peptide. 598

Finally, the score is compared with a threshold to deter- 599

mine if the peptide binds or not to MHC II. The predic- 600

tive power of the scoring matrix was demonstrated on sev- 601

eral benchmark datasets, showing that the novel algorithm 602

may be useful to design peptides that bind to MHC II and 603

that may be used in vaccine development. 604

Major advances in proteomics are a result of signif- 605

icant technological advances in protein purification and 606

mass spectrometry. Another critical component is the 607

automated and reliable protein identification from mass 608

spectrometric data. To improve the protein identification 609

process, Hernandez et al. devised a heuristic algorithm that 610

addresses the difficulties of the current methods, such as 611

poor performance for large databases or for low quality 612

data [74]. The new method based on ACO matches theo- 613

retical peptide sequences from a databasewith a structured 614

representation of the source MS/MS spectrum. Tested 615

with a set of 721 MS/MS spectra, the ACO-based proce- 616

dure showed success rate of 88.9%, demonstrating that the 617

artificial ants may perform an efficient exploration of the 618

search space. 619

Particle SwarmOptimization 620

Particle swarm algorithms are used in diverse biochem- 621

istry and drug design applications, to solve problems that 622

require binary or real value optimization. Among the ad- 623

vantages of using PSO in optimization one should count 624
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the simple algorithm that translates into small and effec-625

tive software, fast convergence, small population, and low626

number of iterations. PSO is applied with success to diffi-627

cult problems, such as feature selection for gene expression628

data [14,75], identification of the global minimum geom-629

etry of chemical compounds [76], enzyme-inhibitor dock-630

ing [15], QSAR [16], and protein motif discovery [77].631

PSO is an effective replacement of GA for the global632

optimization of protein-ligand geometry in docking stud-633

ies. Several PSO modifications of the most popular dock-634

ing program, AutoDock, were proposed in the literature.635

The Tribe-PSO algorithm was used in AutoDock to iden-636

tify the best protein-ligand geometry [78]. In Tribe-PSO637

the population is divided into several subpopulations or638

tribes. Each tribe has the same structure and evolution639

mechanism as the basic PSOmodel. In the first phase, each640

tribe evolves independent of the other tribes and converges641

to an optimum solution. In the second phase the tribes ex-642

change information regarding the best solution from each643

tribe, and in the third phase all particles are united into644

a single population that evolves as a classical PSO model645

towards the final solution. In a comparative test involv-646

ing 100 protein-ligand complexes from PDB, over 90% are647

docked better with Tribe-PSO than with AutoDock. An-648

other PSO modification of AutoDock is SODOCK, which649

combines the basic PSO model with a local search for the650

best particle [79]. Compared with four docking methods651

(GOLD, DOCK, FlexX, and AutoDock) for a set of 37 PDB652

protein-ligand complexes, SODOCK obtained an aver-653

age RMSD of 2.29Å, whereas all other docking programs654

had an RMSD higher than 3Å. In a related implemen-655

tation, PSO@AUTODOCK, AutoDock is combined with656

a PSO variant that allows larger movements in the search657

space [15]. Significant improvement is obtained for 12 out658

of the 37 test complexes, compared with the SODOCK659

predictions.660

Feature selection is an important step in QSAR and661

in virtual screening of chemical libraries, because almost662

all QSAR models are sensitive to the presence of irrel-663

evant descriptors. Another benefit of feature selection is664

the identification of structural descriptors that may ex-665

plain the mechanism of a particular structure-activity re-666

lationship. Agrafiotis and Cedeño used a binary PSO to se-667

lect descriptors for a QSAR based on multilayer feed-for-668

ward artificial neural networks (MLF ANN) [16]. The real669

value PSO model may also be used for feature selection,670

as shown for QSAR models based on k-nearest neighbors671

kernel regression [80]. The target of the PSO model was672

to find the optimum weight (situated in the range [0; 1])673

for each structural descriptor. The features wit the largest674

weights were selected in the QSAR model.675

In a comparative study for 42 cyclooxygenase in- 676

hibitors, Lü et al. found that binary PSO is superior to 677

GA for feature selection in multi-linear regression (MLR) 678

QSAR [81]. Shen et al. showed that the partial least- 679

squares (PLS) QSAR model could be improved by using 680

structural descriptors selected with a binary PSO [82]. An- 681

other approach to feature selection is the optimized block- 682

wise variable combination (OBVC) method that combines 683

a descriptor selection guided by PSO followed by PLS 684

modeling of the data [83,84]. Instead of selecting each de- 685

scriptor independent of the other descriptors, OBVC oper- 686

ates with groups of descriptors. The size and composition 687

of each group of descriptors is optimized with PSO. OBVC 688

was evaluated in QSAR models for the carcinogenic po- 689

tency of aromatic amines [83] and for inhibitors of lung 690

carcinoma cells [84]. OBVC was also tested for a QSAR 691

dataset consisting of 37 ligands of the ˛6 benzodiazepine 692

receptor, and more than 70 structural descriptors (topo- 693

logical, geometric, and quantum indices) [85]. Compar- 694

ative tests show that OBVC exceeds the predictions ob- 695

tained with MLR, PLS, and hierarchical PLS. OBVC may 696

suggest several combinations of descriptors with compa- 697

rable prediction statistics, and can assist the discovery of 698

the most important structural descriptors. 699

PSO is used also to modify and improve QSAR mod- 700

els, such as the piecewise modeling by particle swarm al- 701

gorithm (PMPSO) which is a QSAR based on piecewise 702

linear models [86]. PMPSO may be useful for dataset with 703

high structural diversity, when a single linear model for 704

all compounds might not be the best option. A minimum 705

spanning tree model is used to cluster all compounds, and 706

then PSO is applied to divide the tree in predictive piece- 707

wise linear models. PMPSO was applied with good re- 708

sults for angiotensin II antagonists. A variant of this QSAR 709

model is the piecewise hypersphere modeling by parti- 710

cle swarm optimization (PHMPSO) which clusters sim- 711

ilar compounds in subsets defined as hyperspheres [87]. 712

The position and size of the hyperspheres are optimized 713

with PSO, and then a QSAR model is fitted for the com- 714

pounds in each hypersphere. PHMPSO was tested with 715

good results for dihydrofolate reductase inhibitors, epider- 716

mal growth factor receptor inhibitors, and benzodiazepine 717

receptor ligands [88]. Another PSO-modified algorithm 718

is the optimized sample-weighted PLS (OSWPLS) which 719

uses PSO to weight each object (chemical compound in 720

QSAR) from the training dataset [89]. The weight deter- 721

mines the importance of each object, and the target of the 722

PSO step is to minimize the error of the calibration model. 723

Training a neural network QSAR consists of (a) find- 724

ing the best network topology (number of hidden neu- 725

rons and distribution of the connections between neu- 726
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Drug Design, Artificial IntelligenceMethods in 11

rons), and (b) optimization of the connection weights.727

PSO is very efficient in optimizing the ANN weights, as728

shown in a QSAR study of inhibitors of platelet-derived729

growth factor receptor phosphorylation [18]. The versatil-730

ity of swarm algorithm is practical in a global optimization731

of ANN QSAR, namely finding the best topology and set732

of weights. Shen proposed a hybrid use of PSO in training733

a MLF ANN, namely a binary PSO to determine the opti-734

mum network topology and a continuous PSO to find the735

optimum connection weights [90]. Extensive tests showed736

that this combination converges quickly and may avoid737

the overfitting of the learning dataset of chemicals.738

The training process of a radial basis function arti-739

ficial neural network (RBF ANN) consists of selecting740

the network topology, finding the centers and widths of741

the RBF neurons, and computing the connection weights742

between the hidden and output layers. A hybrid parti-743

cle swarm optimization (HPSO) was used by Zhou et al.744

to train a RBF network for drug design studies [91]. In745

the HPSO algorithm, a discrete PSO is used to opti-746

mize the network topology, whereas a continuous PSO747

is used to optimize the network parameters. The new748

QSAR approach was tested with a dataset of 40 inhibitors749

of murine P388 leukemia cells and over 70 Cerius2 de-750

scriptors. The HPSO network has the highest predictions:751

PLS, r D 0:664; RBF with parameters optimized with PSO,752

r D 0:838; RBF with parameters optimized with K-means,753

r D 0:852; RBF optimized with HPSO, r D 0:894. A sim-754

ilar trend was found for a second QSAR test, performed755

with 72 cyclooxygenase-2 inhibitors: RBF optimized with756

PSO, r D 0:894; RBF optimized with K-means, r D 0:903;757

RBF optimized with HPSO, r D 0:921. The experimen-758

tal evidence suggests that the hybrid PSO optimization759

of RBF-ANN has a fast convergence to predictive QSAR760

models.761

Zhou et al. proposed a novel version of nonlin-762

ear partial least-square method that is based on struc-763

tural descriptors transformed by an artificial neural net-764

work [92]. The structural descriptors represent the ANN765

input, whereas the output signals from the neurons in the766

hidden layer represent the non-linear input for PLS. The767

ANN weights are trained with PSO. The novel non-linear768

QSARmodel was tested with good results for two datasets,769

namely 53 antitumor agents, and 52 benzodiazepine re-770

ceptor ligands.771

As shown in the QSAR studies reviewed here, PSO772

is an efficient method to optimize linear and non-linear773

structure-activity models. A fast convergence to the global774

minimum depends on the parameters that control the775

population size, number of iterations, and weights to up-776

date the velocity of each particle. Choosing the best pa-777

rameters that control a PSO model is a meta-optimiza- 778

tion problem that was solved by Meissner et al. with the 779

optimized particle swarm optimization (OPSO) model, in 780

which the control parameters are optimized by a meta- 781

swarm [93]. Although OPSO is more complex than a clas- 782

sical PSO because it contains swarms within a swarm, the 783

system converges fast to good QSAR models. OPSO was 784

tested for the prediction of the blood-brain barrier perme- 785

ation coefficient with a MLF neural network. 786

Support vector machines (SVM) represent a class of 787

versatile models that can produce non-linear classifica- 788

tion or regression QSAR equations [94]. PSO can be ef- 789

ficiently applied to select the best structural descriptors 790

for SVM models, as demonstrated in a QSAR for P-gly- 791

coprotein substrates [17]. The mathematical formalism 792

of SVM was adapted by Lin et al. for the training of 793

MLF ANN [95]. The parameters of the hybrid method 794

SVM-ANN were optimized with PSO, and the new QSAR 795

model was compared with other two algorithms, namely 796

back-propagation ANN (BP-ANN) and ANN optimized 797

with PSO (PSO-ANN). These methods were compared 798

for a dataset of 111 dihydrofolate reductase inhibitors and 799

for another set of 85 cyclooxygenase-2 inhibitors. The re- 800

sults show that SVM-ANN models have better prediction 801

statistics, and that the PSO procedure converges fast to 802

optimum parameters. A similar QSAR model was devel- 803

oped based on radial basis function ANN [96], by defining 804

a nonlinear SVMmodel (RBF-SVM) representing a kernel 805

transform based on RBF ANN optimized with PSO. QSAR 806

models obtained for inhibitors of HIV-1 reverse transcrip- 807

tase demonstrate that RBF-SVM provides better predic- 808

tions compared to BP-ANN and SVM. 809

Artificial Immune Systems 810

The mechanisms and functions of the biological im- 811

mune system were used as an inspiration for many 812

AIS algorithms, such as the artificial immune network 813

(aiNet) [97,98], the hierarchical artificial immune net- 814

work (HaiNet) [37], the artificial immune recognition sys- 815

tem (AIRS) [99,100,101,102], the clonal selection algo- 816

rithm (CLONALG) [103,104], the clonal selection classi- 817

fication system (CSCA) [105], IMMUNOS-81 [106], and 818

IMMUNOS-99 [107]. The pattern recognition capabilities 819

of the artificial immune systems may be applied in model- 820

ing structure-activity relationships for drug design or for 821

the computational screening of chemical libraries. In the 822

following sections we review several SAR models obtained 823

with AIRS, CLONALG, CSCA, and IMMUNOS. All AIS 824

models were computed with Weka [108]. 825
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AIRS – Artificial Immune Recognition System826

The AIRS machine learning algorithm developed by827

Watkins, Timmis, and Boggess is an efficient and popu-828

lar pattern recognition adaptation of AIS [99,100,101,102].829

Brownlee tested AIRS for a wide range of classification830

problems [109], confirming its utility as a supervised831

learning classifier. The main characteristics of AIRS are832

briefly reviewed below.833

An antigen is represented as an n-dimensional vector834

x D fx1; x2; : : : ; xng, where each structural descriptor xi835

is a real number (xi 2 R for i D 1; 2; : : : ; n), and an asso-836

ciated class y D fC1; �1g. An identical encoding is used837

for antibodies. An artificial recognition ball (ARB) repre-838

sents a B-cell, and consists of an antibody, a number of re-839

sources, and a stimulation value. The similarity between an840

ARB and an antigen is measured by the stimulation value.841

The number of resource from an AIRS model is limited,842

and ARBs compete for their allocation. Resources are allo-843

cated to themost stimulatedARBs by removing them from844

the least stimulated ARBs, and ARBs without resources845

are eliminated from the cell population. The ARB popu-846

lation is trained during several cycles of competition for847

limited resources. In each cycle of ARB training, the best848

ARB classifiers generate mutated clones that enhance the849

antigen recognition process, whereas the ARBs with insuf-850

ficient resources are removed from the population. After851

training, the top ARB classifiers are selected as memory852

cells. Finally, the memory cells are used to classify novel853

antigens (patterns).854

The drug design applications reviewed here were ob-855

tained with AIRS2, an improved version of AIRS [110].856

The AIRS2 algorithm consists of the following steps [109]:857

(1) Initialization. In the first phase of the algorithm the858

system is prepared for the learning process. The train-859

ing data are normalized between 0 and 1. The Eu-860

clidean distance is computed for all pairs of antigens,861

and then the affinity Af is determined as the ratio be-862

tween the distance and the maximum distance. The863

affinity threshold AT is computed as the average affin-864

ity for all antigens in the training set. The memory cell865

pool is populated with randomly selected antigens. At866

the end of the AIRS algorithm, the memory cell pool867

represents the recognition ARBs used as classifiers.868

(2) Train for all antigens. The AIRS algorithm trains869

a classifier by passing only once over the entire pop-870

ulation of training antigens.871

(2.1) Antigen presentation. Each training antigen is pre-872

sented to the memory cell pool, and each memory873

cell receives a stimulation value St, St D 1 � Af . The874

memory cells with the largest stimulation values are875

selected, and a number of mutated clones are created 876

and added to the ARB pool. The number of clones NC 877

generated is computed with the formula: 878

NC D St � CR � HR 879

where the clonal rate CR and the hypermutation rate 880

HR are user defined parameters. 881

(2.2) Competition for limited resources. During this it- 882

erative process the algorithm selects those ARBs that 883

have the best recognition capabilities, while optimally 884

allocating the resources to the best ARBs. For each 885

antigen the process trains only those ARBs from the 886

same class with the antigen. 887

(2.2.1) Perform competition for resources. 888

The total number of resources is a user defined param- 889

eter that limits the number of ARBs. 890

(2.2.1.1) Stimulation. The selected antigen is presented 891

to all ARBs and the stimulation is computed for each 892

cell in the ARB pool. 893

(2.2.1.2) Normalization. The ARB stimulation values 894

NSt are normalized. 895

(2.2.1.3) Allocate limited resources. The amount of re- 896

sources Rs allocated to each ARB is computed from the 897

normalized stimulation NSt and the clonal rate CR: 898

Rs D NSt � CR 899

The ARB pool is sorted in the descending order of al- 900

located resources Rs and then resources are removed 901

from the ARB situated at the end of the list until the 902

sum of all allocated resources is lower than the total 903

number of resources. 904

(2.2.1.4) Remove ARBs with insufficient resources. The 905

ARBs with zero resources are removed from the pool. 906

(2.2.2) Continue with (2.3) if the stop condition is 907

satisfied. The stop condition for the ARB refinement is 908

metwhen the average normalized stimulation is higher 909

than a user defined stimulation threshold. 910

(2.2.3) Generate mutated clones of surviving ARBs. 911

The number of clones generated for each ARB is: 912

NC D St � CR 913

where St is the stimulation against the antigen, and CR 914

is the clonal rate. The clones undergo a process of hy- 915

permutation, during which the elements of the x vector 916

are randomly modified to increase the antigen recog- 917

nition. 918

(2.2.4) Go to (2.2.1) 919

(2.3) Memory cell selection. In this step, new ARB clas- 920

sifiers are evaluated for inclusion in the memory cell 921
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pool. An ARB is inserted into the memory cell pool922

if its stimulation value is higher than that of the ex-923

isting best matching memory cell. The existing best924

matching memory cell is then removed if the affinity925

between the candidate ARB and the existing memory926

cell is less than a cut-off value CutOff computed with927

the formula:928

CutOff D AT � ATS929

where the affinity threshold AT was computed dur-930

ing the initialization phase, and the affinity threshold931

scalar ATS is a user defined parameter.932

(3) Classification. At the end of the training phase, the933

memory cell pool represents the AIRS classifier. The934

classification is performed with a k-nearest neighbor935

method, in which the k best matches to a prediction936

pattern are identified and the predicted class is deter-937

mined with a majority vote. The parameter k is user938

defined, and may be optimized to maximize the pre-939

diction performances.940

AIRS was applied with success in several drug design941

structure-activity relationships that are reviewed here. The942

classification performance of the AIRS algorithm depends943

on eight user defined parameters: affinity threshold scalar,944

clonal rate, hypermutation rate, number of nearest neigh-945

bors, initial memory cell pool size, number of instances946

to compute the affinity threshold, stimulation threshold,947

and total resources. To illustrate the influence of these pa-948

rameters, we show the variation of the prediction statistics949

with the affinity threshold scalar. The statistical indices re-950

ported for each AIRS model are: TPp, true positive in pre-951

diction (number of compounds from class +1 classified in952

class +1); with: FNp, false negative in prediction (num-953

ber of compounds from class +1 classified in class �1);954

with: TNp, true negative in prediction (number of com-955

pounds from class �1 classified in class �1); with: FPp,956

false positive in prediction (number of compounds from957

class �1 classified in class +1); with: Sep, prediction selec-958

tivity; with: Spp, prediction specificity; with: Acp, predic-959

tion accuracy; with: MCCp, prediction Matthews correla-960

tion coefficient.961

Torsade de pointes (TdP) is a polymorphic ventricu-962

lar arrhythmia that may be caused by drugs that induce963

the prolongation of the QT interval [111]. QT prolonga-964

tion and TdP may be caused by a large number of drugs,965

such as antiarrhythmics CE4 , antihistamines, antimicro-966

bials, antidepressants, and antipsychotics. The drug design967

and development costs may be significantly reduced if,968

along with other ADME/Tox filters, chemical compounds969

that have the potential to induce torsade de pointes are970

Drug Design, Artificial Intelligence Methods in, Table 1
AIRS prediction statistics for TdP SAR models based on LSER de-
scriptors and computed for various values of the affinity thresh-
old scalar ATS

ATS TPp FNp TNp FPp Sep Spp Acp MCCp
0.01 76 30 213 30 0.7170 0.8765 0.8281 0.5935
0.05 78 28 217 26 0.7358 0.8930 0.8453 0.6323
0.10 78 28 206 37 0.7358 0.8477 0.8138 0.5710
0.30 71 35 210 33 0.6698 0.8642 0.8052 0.5369
0.50 63 43 203 40 0.5943 0.8354 0.7622 0.4333
0.70 55 51 198 45 0.5189 0.8148 0.7249 0.3394
0.90 49 57 198 45 0.4623 0.8148 0.7077 0.2872

eliminated as early as possible. AIRS was applied with suc- 971

cess to classify 349 drugs into a subset of 106 drugs that in- 972

duce torsade de pointes and a subset of 243 drugs that do 973

not induce torsade de pointes [112]. The chemical struc- 974

ture was described with five linear solvation energy re- 975

lationships (LSER) descriptors, and the prediction of the 976

AIRS models was evaluated with the ten fold (leave-10%- 977

out) cross-validation. The with: MCCp variation with ATS 978

(Table 1) shows that the best predictions are obtained with 979

low values of ATS, in this case ATS D 0:05 (Ac D 0:845, 980

MCC D 0:632). After several steps of optimizations in- 981

volving the remaining seven parameters, the best AIRS 982

model (Ac D 0:860, MCC D 0:671) has better predictions 983

than 11 other machine learning algorithms. 984

In a related study, AIRS was applied to the classifica- 985

tion of 361 drugs (85 induce torsade de pointes, and 276 986

do not induce torsade de pointes) based on 159 structural 987

indices computed from the molecular structure [113]. The 988

ATS parameter has a significant influence on the AIRS 989

predictions (Table 2a). A series of fivefold (leave-20%- 990

out) cross-validation tests shows that MCC increases from 991

0.2173 for ATS D 0:01, peaks at 0.2795 for ATS D 0:09, 992

and then decreases to 0.1604 for ATS D 0:95. To investi- 993

gate the effect of feature selection on the AIRS prediction 994

quality,Wekawas used to reduce the number of features to 995

13 with the combination SubsetEvaluation and BestFirst. 996

Feature selection significantly improves the TdP predic- 997

tions (Table 2b), with the best predictions obtained for 998

ATS D 0:15 (MCC D 0:356). These results suggest that 999

feature selection should be explored in order to increase 1000

the AIRS prediction power. 1001

A good intestinal absorption is a major requirement 1002

for oral drugs [114,115], and various computational mod- 1003

els were proposed as fast, reliable, and inexpensive in silico 1004

methods to assess the intestinal permeability of a chemi- 1005

cal compound before synthesis [116,117]. The oral absorp- 1006

tion of a drug is influence by a large number of variables, 1007

CE4 Please confirm change.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Drug Design, Artificial Intelligence Methods in, Table 2
AIRSprediction statistics for TdPSARmodels basedon2D/3Dde-
scriptors and computed for various values of the affinity thresh-
old scalar ATS

ATS TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 159 structural descriptors
0.01 39 46 213 63 0.4588 0.7717 0.6981 0.2173
0.05 42 43 213 63 0.4941 0.7717 0.7064 0.2484
0.09 43 42 218 58 0.5059 0.7899 0.7230 0.2795
0.15 40 45 204 72 0.4706 0.7391 0.6759 0.1924
0.30 40 45 207 69 0.4706 0.7500 0.6842 0.2039
0.50 36 49 203 73 0.4235 0.7355 0.6620 0.1470
0.70 36 49 201 75 0.4235 0.7283 0.6565 0.1396
0.95 38 47 201 75 0.4471 0.7283 0.6620 0.1604
(b) 13 structural descriptors
0.01 40 45 236 40 0.4706 0.8551 0.7645 0.3327
0.05 42 43 235 41 0.4941 0.8514 0.7673 0.3484
0.09 40 45 227 49 0.4706 0.8225 0.7396 0.2885
0.15 47 38 226 50 0.5529 0.8188 0.7562 0.3558
0.30 30 55 238 38 0.3529 0.8623 0.7424 0.2336
0.50 24 61 243 33 0.2824 0.8804 0.7396 0.1894
0.70 29 56 246 30 0.3412 0.8913 0.7618 0.2668
0.95 30 55 235 41 0.3529 0.8514 0.7341 0.2182

such as drug formulation and stability, aqueous solubil-1008

ity, contents of the gastrointestinal tract, residence time in1009

the intestine, intestinal metabolism, rate of passive intesti-1010

nal permeability, carrier-mediated influx, and active efflux1011

via transporters. The human intestinal absorption(HIA)1012

of 196 drugs (131 drugs that penetrate the human intes-1013

tine, and 65 drugs that do not penetrate the intestine)1014

was modeled with the AIRS algorithm [118]. The AIRS1015

classifiers were obtained with 159 structural descriptors1016

from five classes, namely constitutional, topological in-1017

dices, electrotopological state indices, quantum descrip-1018

tors, and geometrical indices. The influence of the ATS1019

parameter in L20%O cross-validation was investigated for1020

values between 0.01 and 0.95 (Table 3a). As in previous1021

experiments, MCC increases from 0.3174 for ATS D 0:011022

to a maximum of 0.3506 for ATS D 0:09, and then de-1023

creases to 0.1997 for ATS D 0:95. After optimizing all1024

eight parameters, the best predictions of the AIRS algo-1025

rithm (Ac D 0:735, MCC D 0:406) are higher than those1026

obtained with seven other machine learning algorithms,1027

namely Bayesian network, naïve Bayes classifier, update-1028

able naïve Bayes classifier, logistic regression, Gaussian ra-1029

dial basis function network, decision tree with naïve Bayes1030

classifiers at the leaves, and random tree. In a feature se-1031

lection experiment (SubsetEvaluation and BestFirst) the1032

number of structural descriptors was reduced to 21, which1033

Drug Design, Artificial Intelligence Methods in, Table 3
AIRS prediction statistics for HIA SAR models computed for vari-
ous values of the affinity threshold scalar ATS

ATS TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 159 structural descriptors
0.01 105 26 33 32 0.8015 0.5077 0.7041 0.3174
0.04 107 24 33 32 0.8168 0.5077 0.7143 0.3364
0.09 107 24 34 31 0.8168 0.5231 0.7194 0.3506
0.15 107 24 28 37 0.8168 0.4308 0.6888 0.2640
0.30 100 31 30 35 0.7634 0.4615 0.6633 0.2287
0.50 105 26 25 40 0.8015 0.3846 0.6633 0.1997
0.70 105 26 25 40 0.8015 0.3846 0.6633 0.1997
0.95 105 26 25 40 0.8015 0.3846 0.6633 0.1997
(b) 21 structural descriptors
0.01 113 18 41 24 0.8626 0.6308 0.7857 0.5064
0.04 114 17 42 23 0.8702 0.6462 0.7959 0.5300
0.09 113 18 39 26 0.8626 0.6000 0.7755 0.4796
0.15 111 20 40 25 0.8473 0.6154 0.7704 0.4727
0.30 116 15 30 35 0.8855 0.4615 0.7449 0.3885
0.50 121 10 30 35 0.9237 0.4615 0.7704 0.4500
0.70 120 11 28 37 0.9160 0.4308 0.7551 0.4090
0.95 123 8 28 37 0.9389 0.4308 0.7704 0.4495

improved considerably the AIRS predictions [119]. The 1034

results obtained for the ATS parameter (Table 3b) show 1035

a significant increase across the entire range of values, with 1036

a maximum of 0.53 for ATS D 0:04. 1037

P-glycoprotein (Pgp) is responsible for the low cellu- 1038

lar accumulation of anticancer drugs, for reduced oral ab- 1039

sorption, for low blood-brain barrier penetration, and in 1040

hepatic, renal, or intestinal elimination of drugs. Compu- 1041

tational methods for the identification of Pgp substrates 1042

are useful drug design tools for the early elimination of 1043

potential Pgp substrates [120,121]. The immune system 1044

classifier AIRS was used to discriminate between 116 Pgp 1045

substrates and 85 Pgp nonsubstrates [122]. The SAR mod- 1046

els were computed from 159 structural descriptors and 1047

the prediction power was estimated with L20%O cross- 1048

validation. Low values for the ATS parameter give bet- 1049

ter predictions, with the highest predictions obtained for 1050

ATS D 0:03 (Table 4a). The AIRS model optimized for 1051

all eight parameters (Ac D 0:702, MCC D 0:380) is better 1052

than five machine learning algorithms (alternating deci- 1053

sion tree, Bayesian network, logistic regression with ridge 1054

estimator, random tree, and fast decision tree learner), 1055

demonstrating that Pgp substratesmay be successfully rec- 1056

ognized with AIRS. A feature selection step reduces the 1057

number of structural descriptors from 159 to 15, and in- 1058

creases the SAR performances over the entire range of ATS 1059

values (Table 4b) [119]. The best predictions are obtained 1060
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Drug Design, Artificial Intelligence Methods in, Table 4
AIRS prediction statistics for Pgp SAR models computed for vari-
ous values of the affinity threshold scalar ATS

ATS TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 159 structural descriptors
0.01 85 31 45 40 0.7328 0.5294 0.6468 0.2671
0.03 85 31 48 37 0.7328 0.5647 0.6617 0.3009
0.07 80 36 46 39 0.6897 0.5412 0.6269 0.2320
0.15 78 38 51 34 0.6724 0.6000 0.6418 0.2709
0.30 80 36 42 43 0.6897 0.4941 0.6070 0.1863
0.50 80 36 44 41 0.6897 0.5176 0.6169 0.2092
0.70 80 36 43 42 0.6897 0.5059 0.6119 0.1978
0.95 80 36 43 42 0.6897 0.5059 0.6119 0.1978
(b) 15 structural descriptors
0.01 86 30 62 23 0.7414 0.7294 0.7363 0.4668
0.03 85 31 59 26 0.7328 0.6941 0.7164 0.4241
0.07 85 31 54 31 0.7328 0.6353 0.6915 0.3681
0.15 88 28 58 27 0.7586 0.6824 0.7264 0.4403
0.30 87 29 57 28 0.7500 0.6706 0.7164 0.4199
0.50 81 35 56 29 0.6983 0.6588 0.6816 0.3544
0.70 78 38 58 27 0.6724 0.6824 0.6766 0.3509
0.95 80 36 56 29 0.6897 0.6588 0.6766 0.3455

with ATS D 0:01 (Ac D 0:736 and MCC D 0:467), but1061

the variation of the prediction statistics is not monotonous1062

with ATS, and no simple rule can be extracted to guide fur-1063

ther experiments.1064

Another successful application of AIRS in drug design1065

was reported for the identification of benzodiazepine re-1066

ceptor (BZR) ligands [123]. The structure of the 163 BZR1067

ligands was encoded with 75 structural descriptors, and1068

AIRS classifiers were trained to discriminate between 821069

high affinity ligands (class +1, pIC50 between 8.92 and1070

7.80) and 81 low affinity ligands (class �1, pIC50 between1071

7.77 and 5). A scan of the ATS values (Table 5a) shows1072

that the best predictions are obtained for ATS D 0:0251073

(Ac D 0:7423 and MCC D 0:4867). The feature selection1074

step further reduces the number of structural descriptors1075

to 16 (Table 5b), and results in better predictions (best1076

ATS D 0:20, with Ac D 0:7791 and MCC D 0:5591).1077

Numerous organic chemicals are environmental pol-1078

lutants, and a considerable number of studies are ded-1079

icated to the computational prediction of their mecha-1080

nism of aquatic toxicity (MOA). The reliable prediction of1081

MOA has major applications in selecting the appropriate1082

QSAR model, to identify chemicals with similar toxicity1083

mechanism, and in extrapolating toxic effects between dif-1084

ferent species and exposure regimens [124,125]. The im-1085

mune system AIRS was applied for the MOA prediction of1086

187 chemicals (143 non-polar narcotics, and 44 polar nar-1087

Drug Design, Artificial Intelligence Methods in, Table 5
AIRS prediction statistics for BZR SAR models computed for vari-
ous values of the affinity threshold scalar ATS

ATS TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 75 structural descriptors
0.01 63 19 52 29 0.7683 0.6420 0.7055 0.4137
0.05 64 18 53 28 0.7805 0.6543 0.7178 0.4385
0.10 62 20 52 29 0.7561 0.6420 0.6994 0.4008
0.20 60 22 57 24 0.7317 0.7037 0.7178 0.4356
0.25 65 17 56 25 0.7927 0.6914 0.7423 0.4867
0.30 62 20 56 25 0.7561 0.6914 0.7239 0.4485
0.50 63 19 56 25 0.7683 0.6914 0.7301 0.4611
0.95 63 19 56 25 0.7683 0.6914 0.7301 0.4611
(b) 16 structural descriptors
0.01 64 18 57 24 0.7805 0.7037 0.7423 0.4857
0.05 65 17 57 24 0.7927 0.7037 0.7485 0.4985
0.10 57 25 55 26 0.6951 0.6790 0.6871 0.3742
0.20 62 20 65 16 0.7561 0.8025 0.7791 0.5591
0.25 60 22 62 19 0.7317 0.7654 0.7485 0.4974
0.30 61 21 61 20 0.7439 0.7531 0.7485 0.4970
0.50 59 23 62 19 0.7195 0.7654 0.7423 0.4854
0.95 59 23 61 20 0.7195 0.7531 0.7362 0.4728

Drug Design, Artificial Intelligence Methods in, Table 6
AIRS prediction statistics for MOA SARmodels computed for var-
ious values of the affinity threshold scalar ATS

ATS TPp FNp TNp FPp Sep Spp Acp MCCp
0.01 138 5 40 4 0.9650 0.9091 0.9519 0.8674
0.02 138 5 40 4 0.9650 0.9091 0.9519 0.8674
0.05 138 5 40 4 0.9650 0.9091 0.9519 0.8674
0.15 135 8 39 5 0.9441 0.8864 0.9305 0.8120
0.30 139 4 39 5 0.9720 0.8864 0.9519 0.8653
0.50 138 5 39 5 0.9650 0.8864 0.9465 0.8514
0.70 137 6 39 5 0.9580 0.8864 0.9412 0.8379
0.95 137 6 39 5 0.9580 0.8864 0.9412 0.8379

cotics) [126]. The chemical structure was described with 1088

five LSER descriptors, and the AIRS predictions were eval- 1089

uated with the ten fold cross-validation. The ATS parame- 1090

ter was modified between 0.01 and 0.95 (Table 6), and the 1091

best predictions were obtained for low ATS values (0.01, 1092

0.02, and 0.05), namely Ac D 0:9519 and MCC D 0:8674. 1093

Based on the high prediction rates obtained with AIRS, 1094

such models may be used to identify the aquatic toxicity 1095

mechanism and to select the appropriate computational 1096

model for new chemical compounds. 1097
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CLONALG – Clonal Selection Algorithm1098

An AIS algorithm that gives a central role to the clonal1099

selection theory is CLONALG, proposed by de Castro1100

andVon Zuben [103,104]. CLONALG implements several1101

mechanisms of the clonal selection: training of a group of1102

memory cells; identification and cloning of the antibod-1103

ies with the highest recognition power; death of the an-1104

tibodies with low recognition power; cloning and hyper-1105

mutation of the antibodies with high recognition power;1106

evaluation and replacement of the clones; generation and1107

preservation of antibody diversity. The CLONALG algo-1108

rithm, as implemented by Brownlee, consists of the follow-1109

ing steps [105]:1110

(1) Initialization. The CLONALG algorithm starts by1111

generating a pool of N antibodies, which is subse-1112

quently partitioned into the memory antibody pool1113

(MAP) and the remaining antibody pool (RAP). MAP1114

contains m antibodies, and at the end of the training1115

process it will represent the solution of the CLON-1116

ALG classifier. RAP contains the remaining antibod-1117

ies, r D N � m, and it has the role of adding additional1118

diversity during the learning phase.1119

(2) Train antibodies. The main part of the CLONALG1120

algorithm is an iterative process of exposing the sys-1121

tem to all antigens from the training set for a number1122

of G generations (iterations).1123

(2.1) Train for each antigen. Repeat steps (2.2)–(2.9) for1124

all antigens in the training set. In each generation, an1125

antigen is selected for training once and only once.1126

(2.2) Antigen selection. For each generation, an antigen1127

is randomly selectedwithout replacement from the en-1128

tire pool of antigens.1129

(2.3) Affinity calculation. The selected antigen interacts1130

with all antibodies, and the affinity is calculated for1131

the interaction between the antigen and every antibody1132

in the system. The affinity measures the similarity be-1133

tween an antigen and an antibody, and is based on the1134

Euclidean distance between the vectors of structural1135

descriptors that characterize the antigen and the an-1136

tibody.1137

(2.4) Select antibodies. The antibodies are ranked ac-1138

cording to their decreasing affinity towards the anti-1139

gen, and the top n antibodies are selected for further1140

processing.1141

(2.5) Clone antibodies. All n antibodies selected in the1142

previous step are cloned proportionally with their1143

affinity. The number of clones computed for an anti-1144

body that is ranked ith according to its affinity, with1145

i 2 [1; n], is 1146

Nc D
�
CF � N

i
C 0:5

�
1147

where CF is the clonal factor. The total number of 1148

clones generated for the entire system of n antibodies 1149

is: 1150

NC D
nX

iD1

Nc : 1151

(2.6) Affinity maturation. The clones enter the process 1152

of affinity maturation, during which random muta- 1153

tions are performed onto each clone in order to in- 1154

crease its affinity towards the antigen. The degree of 1155

affinity maturation is inversely proportional to the ini- 1156

tial affinity, namely the lower the initial affinity the 1157

greater the mutation rate is. 1158

(2.7) Evaluate clones. All clones are exposed to the anti- 1159

gen to compute their affinity. 1160

(2.8) Select candidates. The antibodies with the highest 1161

affinity are selected to replace antibodies from MAP 1162

that have lower affinities. 1163

(2.9) Replacement. The RAP group of antibodies is 1164

ranked according to the decreasing affinity towards the 1165

antigen, and the set of s antibodies with the lowest 1166

affinity is replaces with random antibodies. 1167

(3) Classification. After training the system for G gener- 1168

ations, the MAP group of antigens represents the solu- 1169

tion of the CLONALG classifier. 1170

The CLONALG machine learning was tested with suc- 1171

cess in drug design applications, namely recognition of 1172

glycogen phosphorylase B inhibitors, classification of ben- 1173

zodiazepine receptor ligands, and identification of polar 1174

and nonpolar narcotic pollutants. To illustrate the effect 1175

of the user defined parameters on the prediction perfor- 1176

mance of CLONALG, we show the influence of the clonal 1177

factor CF on the L20%O cross-validation statistics. The 1178

clonal factor is a scaling factor, with values between 0 1179

and 1, that determines the number of clones generated for 1180

each selected antibody. Low values for CF result in a lo- 1181

cal search, whereas for high values the algorithm generates 1182

a larger number of clones that may explore a wider region 1183

and result in a higher diversity. 1184

CLONALG in drug development for the recognition of 1185

glycogen phosphorylase B (GPB) inhibitors, based on a set 1186

of 66 compounds and 70 structural descriptors [127]. The 1187

subset of active compounds contains 33 chemicals (class 1188

+1, pKi between 6.8 and 2.5), whereas the subset of in- 1189

active compounds contains the remaining 33 chemicals 1190
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Drug Design, Artificial Intelligence Methods in, Table 7
CLONALGprediction statistics for GPB SARmodels computed for
various values of the clonal factor CF

CF TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 70 structural descriptors
0.01 20 13 15 18 0.6061 0.4545 0.5303 0.0613
0.05 22 11 17 16 0.6667 0.5152 0.5909 0.1839
0.08 22 11 14 19 0.6667 0.4242 0.5455 0.0937
0.15 20 13 17 16 0.6061 0.5152 0.5606 0.1217
0.25 23 10 15 18 0.6970 0.4545 0.5758 0.1562
0.50 23 10 18 15 0.6970 0.5455 0.6212 0.2453
0.65 24 9 16 17 0.7273 0.4848 0.6061 0.2186
0.95 22 11 14 19 0.6667 0.4242 0.5455 0.0937
(b) 2 structural descriptors
0.01 21 12 22 11 0.6364 0.6667 0.6515 0.3032
0.05 21 12 23 10 0.6364 0.6970 0.6667 0.3339
0.08 21 12 23 10 0.6364 0.6970 0.6667 0.3339
0.15 21 12 23 10 0.6364 0.6970 0.6667 0.3339
0.25 21 12 23 10 0.6364 0.6970 0.6667 0.3339
0.50 21 12 22 11 0.6364 0.6667 0.6515 0.3032
0.65 21 12 23 10 0.6364 0.6970 0.6667 0.3339
0.95 21 12 22 11 0.6364 0.6667 0.6515 0.3032

(class �1, pKi between 2.4 and 1.3). The prediction perfor-1191

mance depends on the number of clones generated, con-1192

trolled by the values of CF (Table 7a), with best results for1193

CF D 0:50 (Ac D 0:6212 and MCC D 0:2453), whereas1194

low and high values for CF result in lower predictions.1195

A feature selection step drastically reduces the number of1196

structural descriptors from 70 to 2, while the model pre-1197

diction increases (Ac D 0:6667 and MCC D 0:3339) for1198

several CF values (Table 7b).1199

The CLONALG immune system was tested for the1200

classification of 163 benzodiazepine receptor (BZR) lig-1201

ands (82 high affinity ligands and 81 low affinity ligands)1202

which are encoded with 75 structural descriptors [123].1203

The clonal factor was modified between 0.01 and 0.95 (Ta-1204

ble 8a). The prediction MCC increases from 0.2767 for1205

CF D 0:01, peaks at 0.4008 for CF D 0:60, and then de-1206

creases to 0.2888 for CF D 0:90. These results indicate that1207

too few or too many clones are detrimental to the antigen1208

recognition. The number of structural descriptors can be1209

significantly reduced to 16 by feature selection (Table 8b),1210

which also results in a slight increase of the prediction1211

quality (MCC D 0:4267 for CF D 0:45). The optimum CF1212

is situated in themiddle of the range of CF values, similarly1213

with the results obtained for the identification of GPB in-1214

hibitors.1215

The mechanism of toxic action of polar and nonpo-1216

lar narcotic pollutants may be efficiently identified with1217

Drug Design, Artificial Intelligence Methods in, Table 8
CLONALGprediction statistics for BZR SARmodels computed for
various values of the clonal factor CF

CF TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 75 structural descriptors
0.01 56 26 48 33 0.6829 0.5926 0.6380 0.2767
0.05 57 25 50 31 0.6951 0.6173 0.6564 0.3134
0.10 58 24 51 30 0.7073 0.6296 0.6687 0.3380
0.20 56 26 52 29 0.6829 0.6420 0.6626 0.3252
0.45 56 26 53 28 0.6829 0.6543 0.6687 0.3374
0.60 62 20 52 29 0.7561 0.6420 0.6994 0.4008
0.85 57 25 47 34 0.6951 0.5802 0.6380 0.2773
0.95 63 19 47 34 0.7683 0.5802 0.6748 0.3550
(b) 16 structural descriptors
0.01 42 40 53 28 0.5122 0.6543 0.5828 0.1682
0.05 57 25 53 28 0.6951 0.6543 0.6748 0.3498
0.10 53 29 55 26 0.6463 0.6790 0.6626 0.3255
0.20 57 25 54 27 0.6951 0.6667 0.6810 0.3620
0.45 64 18 52 29 0.7805 0.6420 0.7117 0.4267
0.60 61 21 52 29 0.7439 0.6420 0.6933 0.3880
0.85 51 31 55 26 0.6220 0.6790 0.6503 0.3014
0.95 57 25 55 26 0.6951 0.6790 0.6871 0.3742

Drug Design, Artificial Intelligence Methods in, Table 9
CLONALG prediction statistics for MOA SAR models computed
for various values of the clonal factor CF

CF TPp FNp TNp FPp Sep Spp Acp MCCp
0.01 98 16 73 3 0.8596 0.9605 0.9000 0.8052
0.05 100 14 72 4 0.8772 0.9474 0.9053 0.8116
0.10 103 11 75 1 0.9035 0.9868 0.9368 0.8763
0.15 105 9 68 8 0.9211 0.8947 0.9105 0.8141
0.30 104 10 72 4 0.9123 0.9474 0.9263 0.8503
0.55 110 4 69 7 0.9649 0.9079 0.9421 0.8791
0.70 102 12 73 3 0.8947 0.9605 0.9211 0.8427
0.90 105 9 73 3 0.9211 0.9605 0.9368 0.8720

CLONALG classifiers [128]. The dataset consists of 190 1218

compounds (114 nonpolar pollutants, class +1; 76 polar 1219

pollutants, class �1), with each chemical characterized by 1220

five structural descriptors, namely the octanol-water parti- 1221

tion coefficient, the energy of the highest occupied molec- 1222

ular orbital, the energy of the lowest unoccupied molec- 1223

ular orbital, the most negative partial charge on any non- 1224

hydrogen atom in the molecule, and the most positive par- 1225

tial charge on a hydrogen atom. The prediction MCC has 1226

no clear-cut variation with CF (Table 9), but the optimum 1227

is still in the middle of the range, as in previous studies, 1228

with MCC D 0:8791 for CF D 0:55. 1229



Unc
or

re
cte

d 
Pro

of

20
08

-0
8-

20

��

Meyers: Encyclopedia of Complexity and Systems Science — Entry 180 — 2008/8/20 — 16:17 — page 18 — le-tex
��

�� ��

18 Drug Design, Artificial IntelligenceMethods in

CSCA – Clonal Selection Classification System1230

The clonal selection classification system, developed by1231

Brownlee, is formulated as a function optimization proce-1232

dure that maximizes the number of patterns correctly clas-1233

sified and minimizes the number of patterns incorrectly1234

classified [105]. Unlike the AIRS algorithm, in which the1235

system is exposed only once to the set of antigens, CSCA1236

is trained for several generations, and during a generation1237

the entire set of antibodies is exposed to all antigens. The1238

computational steps of the CSCA algorithm are shown in1239

the following diagram:1240

(1) Initialization. The CSCA algorithm starts by generat-1241

ing a set of N antibodies.1242

(2) Training. Repeat the training of all antibodies for G1243

generations (iterations).1244

(2.1) Selection and pruning. The entire group of anti-1245

bodies is exposed to the antigen set and a fitness score1246

is computed for each antibody. Then all antibodies are1247

selected and the following three evaluation rules are1248

applied to each antibody:1249

(2.1.1) Remove from the selected set all antibodies with1250

a misclassification score of zero.1251

(2.1.2) Antibodies that have zero correct classification1252

and misclassification higher than zero are reassigned1253

to the class of the majority. Fitness is recalculated.1254

(2.1.3) Remove from the selected set and from the base1255

antibody population all antibodies with a fitness scor-1256

ing lower than a threshold.1257

(2.2) Cloning and mutation. The selected set of antibod-1258

ies is cloned and mutated.1259

(2.3) Insert new antibodies. Insert the clones generated1260

into themain antibody population. A number of n ran-1261

domly selected antigens from the antigen set are in-1262

serted into the main antibody population, where n is1263

the number of antibodies selected in step (2.1).1264

(3) Final pruning. The antibody population is exposed to1265

the entire antigen population, fitness scores are com-1266

puted for each antibody, and pruning of antibodies is1267

performed as described in step (2.1.3).1268

(4) Select classifier. The final antibody population repre-1269

sents the CSCA classifier. To classify a new pattern,1270

the classification antibodies are exposed to the pattern,1271

then the kmost similar (highest affinity) antibodies are1272

selected and amajority vote assigns the class of the pat-1273

tern.1274

The artificial immune system CSCA was applied in1275

several virtual screening studies, namely identification of1276

estrogen receptor ligands, recognition of dihydrofolate re-1277

ductase inhibitors, classification of angiotensin convert-1278

ing enzyme inhibitors, detection of benzodiazepine re- 1279

ceptor ligands, and SAR for thermolysin inhibitors. To 1280

demonstrate the influence of the user defined parameters 1281

on the CSCA predictions, we present the influence of the 1282

clonal scale factor CSF, tested in L20%O cross-validation. 1283

CSF is used to increase or decrease the number of clones 1284

generated for each antibody, and has a default value of 1285

one. Low values for CSF promote a low diversity of so- 1286

lutions, whereas high CSF values increase the diversity of 1287

the recognition cells. 1288

CSCA was applied for the classification of 232 chem- 1289

ical compounds into estrogen receptor (ER) ligands (131 1290

chemicals, class +1) and compounds that do not bind to 1291

the estrogen receptor (101 chemicals, class �1) [129]. The 1292

chemical structure was represented with 312 topological 1293

indices computed with Molconn-Z. The clonal scale fac- 1294

tor was modified between 0.1 and 4 (Table 10a), with 1295

the best predictions obtained for CSF D 2 (Ac D 0:6207 1296

and MCC D 0:2057), but with no clear trend apparent 1297

for the values that give the best predictions. For exam- 1298

ple, the next best predictions are obtained for CSF D 0:1 1299

(MCC D 0:1935), whereas the lowest predictions are ob- 1300

tained with CSF D 0:7 (MCC D 0:0416). To investigate 1301

the influence of feature selection on the classification 1302

abilities of CSCA, 29 structural descriptors were selected 1303

with SubsetEvaluation and BestFirst, which results in 1304

slightly better predictions for a much lower value of CSF 1305

(CSF D 0:1, Ac D 0:6336, MCC D 0:2508; Table 10b). 1306

Dihydrofolate reductase (DHFR) inhibitors may be ef- 1307

ficiently identified with CSCA, as was demonstrated for 1308

a dataset of 397 chemicals (198 compounds in class +1, 1309

pIC50 between 9.81 and 6.08; 199 compounds in class 1310

�1, pIC50 between 6.06 and 3.30) [130]. CSCA classifiers 1311

computed with 70 structural descriptors are used to eval- 1312

uate the effect of the clonal scale factor on the predic- 1313

tion accuracy. Based on the structure of the CSCA al- 1314

gorithm, it should be expected that higher CSF values 1315

are useful in identifying better solutions, because more 1316

clones are generated, and the system explores a wider di- 1317

versity of solutions. However, for dihydrofolate reduc- 1318

tase inhibitors, the highest predictions are obtained for 1319

CSF D 0:2 (Ac D 0:5945 and MCC D 0:1935; Table 11a). 1320

Also, for high CSF values, between 0.7 and 3, MCC de- 1321

creases markedly. A dramatic increase of the CSCA model 1322

quality is obtained with a feature selection that reduces the 1323

set of structural descriptors to 5 (Table 11b). The best pre- 1324

dictions are obtained for a much higher CSF value, namely 1325

CSF D 3, with Ac D 0:7834 and MCC D 0:5670. Further 1326

tests should be performedwith other SAR datasets in order 1327

to find the optimumCSF values for various drug screening 1328

experiments. 1329
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Drug Design, Artificial Intelligence Methods in, Table 10
CSCA prediction statistics for ER SAR models computed for vari-
ous values of the clonal scale factor CSF

CSF TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 312 structural descriptors
0.1 98 33 44 57 0.7481 0.4356 0.6121 0.1935
0.3 92 39 35 66 0.7023 0.3465 0.5474 0.0519
0.5 97 34 37 64 0.7405 0.3663 0.5776 0.1149
0.7 92 39 34 67 0.7023 0.3366 0.5431 0.0416
1.0 108 23 29 72 0.8244 0.2871 0.5905 0.1326
2.0 112 19 32 69 0.8550 0.3168 0.6207 0.2057
3.0 99 32 31 70 0.7557 0.3069 0.5603 0.0698
4.0 106 25 30 71 0.8092 0.2970 0.5862 0.1238
(b) 29 structural descriptors
0.1 91 40 56 45 0.6947 0.5545 0.6336 0.2508
0.3 99 32 45 56 0.7557 0.4455 0.6207 0.2119
0.5 97 34 42 59 0.7405 0.4158 0.5991 0.1651
0.7 94 37 47 54 0.7176 0.4653 0.6078 0.1887
1.0 98 33 47 54 0.7481 0.4653 0.6250 0.2226
2.0 98 33 38 63 0.7481 0.3762 0.5862 0.1338
3.0 96 35 41 60 0.7328 0.4059 0.5905 0.1466
4.0 98 33 42 59 0.7481 0.4158 0.6034 0.1738

Drug Design, Artificial Intelligence Methods in, Table 11
CSCA prediction statistics for DHFR SAR models computed for
various values of the clonal scale factor CSF

CSF TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 70 structural descriptors
0.1 130 68 92 107 0.6566 0.4623 0.5592 0.1212
0.2 138 60 98 101 0.6970 0.4925 0.5945 0.1935
0.5 129 69 92 107 0.6515 0.4623 0.5567 0.1159
0.7 130 68 87 112 0.6566 0.4372 0.5466 0.0961
1.0 119 79 98 101 0.6010 0.4925 0.5466 0.0940
2.0 142 56 87 112 0.7172 0.4372 0.5768 0.1608
3.0 115 83 99 100 0.5808 0.4975 0.5390 0.0786
4.0 132 66 89 110 0.6667 0.4472 0.5567 0.1167
(b) 5 structural descriptors
0.1 166 32 144 55 0.8384 0.7236 0.7809 0.5656
0.2 155 43 142 57 0.7828 0.7136 0.7481 0.4975
0.5 151 47 150 49 0.7626 0.7538 0.7582 0.5164
0.7 149 49 148 51 0.7525 0.7437 0.7481 0.4963
1.0 152 46 151 48 0.7677 0.7588 0.7632 0.5265
2.0 154 44 150 49 0.7778 0.7538 0.7657 0.5317
3.0 158 40 153 46 0.7980 0.7688 0.7834 0.5670
4.0 148 50 151 48 0.7475 0.7588 0.7531 0.5063

Drug Design, Artificial Intelligence Methods in, Table 12
CSCA prediction statistics for ACE SAR models with 12 structural
descriptors computed for various values of the clonal scale factor
CSF

CSF TPp FNp TNp FPp Sep Spp Acp MCCp
0.1 45 12 50 7 0.7895 0.8772 0.8333 0.6692
0.3 43 14 49 8 0.7544 0.8596 0.8070 0.6175
0.5 47 10 48 9 0.8246 0.8421 0.8333 0.6668
0.7 44 13 49 8 0.7719 0.8596 0.8158 0.6340
0.9 47 10 50 7 0.8246 0.8772 0.8509 0.7027
2.0 46 11 43 14 0.8070 0.7544 0.7807 0.5622
3.0 46 11 49 8 0.8070 0.8596 0.8333 0.6676
4.0 46 11 48 9 0.8070 0.8421 0.8246 0.6495

Another set of experiments with CSCA involved the 1330

classification of 114 angiotensin converting enzyme (ACE) 1331

inhibitors (57 compounds in class +1, pIC50 between 1332

9.94 and 6.41; 57 compounds in class �1, pIC50 between 1333

6.37 and 2.14) [131]. The chemical structure was encoded 1334

with 56 structural descriptors, and the CSF influence was 1335

evaluated for 16 values between 0.1 and 4. For all but 1336

one CSF values the CSCA classifiers give the same pre- 1337

diction indices, with Ac D 0:8684 and MCC D 0:7510. 1338

The CSCA insensitivity to the CSF variation is unex- 1339

pected, and more experiments are necessary to fully un- 1340

derstand this behavior. A feature selection step decreases 1341

the pool of structural descriptors to 12 (Table 12), with 1342

a slight decrease in the prediction statistics (CSF D 0:9, 1343

Ac D 0:8509, MCC D 0:7027). Usually, feature selection 1344

provides a smaller set of structural descriptors that in- 1345

crease the predictions of artificial immune systems. The 1346

exception encountered for ACE inhibitors should be fur- 1347

ther investigated to identify possible explanations and bet- 1348

ter feature selection procedures. 1349

The CSCA immune system was evaluated for the dis- 1350

crimination of 163 benzodiazepine receptor (BZR) lig- 1351

ands (82 high affinity ligands and 81 low affinity lig- 1352

ands) [123]. Starting from a set of 75 structural descrip- 1353

tors, CSF wasmodified between 0.1 and 4 (Table 13a), with 1354

the best results obtained for CSF D 0:7 (Ac D 0:6994 and 1355

MCC D 0:3988). A small improvement of the CSCA pre- 1356

dictions is obtained by reducing the pool of descriptors to 1357

16 by feature selection (Table 13b). Although the model 1358

improvement is not big (Ac D 0:7055 andMCC D 0:4166 1359

for CSF D 2), feature selection is still important because 1360

the CSCA model can be computed faster, and the selected 1361

descriptors may suggest which molecular features influ- 1362

ence the biological activity. 1363

CSCA was also tested for a dataset of 76 thermolysin 1364

(THER) inhibitors (38 compounds in class +1, pKi be- 1365
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Drug Design, Artificial Intelligence Methods in, Table 13
CSCA prediction statistics for BZR SARmodels computed for var-
ious values of the clonal scale factor CSF

CSF TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 75 structural descriptors
0.1 55 27 57 24 0.6707 0.7037 0.6871 0.3746
0.3 52 30 58 23 0.6341 0.7160 0.6748 0.3513
0.5 52 30 58 23 0.6341 0.7160 0.6748 0.3513
0.7 57 25 57 24 0.6951 0.7037 0.6994 0.3988
1.0 48 34 65 16 0.5854 0.8025 0.6933 0.3971
2.0 48 34 59 22 0.5854 0.7284 0.6564 0.3169
3.0 54 28 54 27 0.6585 0.6667 0.6626 0.3252
4.0 58 24 52 29 0.7073 0.6420 0.6748 0.3501
(b) 16 structural descriptors
0.1 56 26 55 26 0.6829 0.6790 0.6810 0.3619
0.3 62 20 51 30 0.7561 0.6296 0.6933 0.3890
0.5 53 29 57 24 0.6463 0.7037 0.6748 0.3506
0.7 60 22 54 27 0.7317 0.6667 0.6994 0.3993
1.0 61 21 45 36 0.7439 0.5556 0.6503 0.3050
2.0 65 17 50 31 0.7927 0.6173 0.7055 0.4166
3.0 58 24 55 26 0.7073 0.6790 0.6933 0.3865
4.0 58 24 51 30 0.7073 0.6296 0.6687 0.3380

tween 10.17 and 5.55; 38 compounds in class �1, pKi be-1366

tween 5.16 and 0.52) and 64 structural descriptors [132].1367

For 14 out of 16 CSF values tested in this experi-1368

ment, the CSCA classifiers have identical predictions, with1369

Ac D 0:6711 andMCC D 0:3162. The best predictions are1370

obtained for CSF D 3:5, with slightly higher prediction1371

statistics, namely MCC D 0:3422 (Table 14a). Feature se-1372

lection reduces the number of descriptors to 10, which1373

results in a minor improvement (CSF D 2, Ac D 0:6974,1374

MCC D 0:4124, Table 14b).1375

IMMUNOS1376

Carter developed the IMMUNOS-81 artificial immune1377

systems as an instance based classifier with some similarity1378

to k-nearest neighbor classifiers [106]. Brownlee extended1379

this algorithm by adding elements from other AIS classi-1380

fiers, such as cloning and hypermutation, to obtain IM-1381

MUNOS-99 [107]. A brief description of the IMMUNOS-1382

99 consists of the following steps:1383

(1) Initialization. The training group of antigens is di-1384

vided into groups based on class label.1385

(2) Train B-cell groups. The final IMMUNOS classifier1386

consists of a B-cell population for each class repre-1387

sented in the training set of antigens. Each B-cell pop-1388

ulation is generated and trained independent of the1389

other B-cell populations. Steps (2.1) and (2.2) are re-1390

Drug Design, Artificial Intelligence Methods in, Table 14
CSCA prediction statistics for THER SAR models computed for
various values of the clonal scale factor CSF

CSF TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 64 structural descriptors
0.1 24 14 26 12 0.6316 0.6842 0.6579 0.3162
0.5 24 14 26 12 0.6316 0.6842 0.6579 0.3162
1.0 24 14 26 12 0.6316 0.6842 0.6579 0.3162
2.0 24 14 26 12 0.6316 0.6842 0.6579 0.3162
2.5 19 19 27 11 0.5000 0.7105 0.6053 0.2154
3.0 24 14 26 12 0.6316 0.6842 0.6579 0.3162
3.5 25 13 26 12 0.6579 0.6842 0.6711 0.3422
4.0 24 14 26 12 0.6316 0.6842 0.6579 0.3162
(b) 10 structural descriptors
0.1 20 18 27 11 0.5263 0.7105 0.6184 0.2410
0.5 19 19 31 7 0.5000 0.8158 0.6579 0.3328
1.0 20 18 24 14 0.5263 0.6316 0.5789 0.1588
2.0 21 17 32 6 0.5526 0.8421 0.6974 0.4124
2.5 19 19 27 11 0.5000 0.7105 0.6053 0.2154
3.0 21 17 31 7 0.5526 0.8158 0.6842 0.3819
3.5 13 25 32 6 0.3421 0.8421 0.5921 0.2127
4.0 16 22 32 6 0.4211 0.8421 0.6316 0.2901

peated C times, where C is the number of antigen 1391

classes. 1392

(2.1) Create B-cell population. Generate a B-cell popula- 1393

tion for the antigen class under training. A fraction of 1394

the antigen population from that class is used as seed 1395

for the B-cell population. 1396

(2.2) Training. Train the B-cell class for G generations 1397

(iterations). 1398

(2.2.1) Expose population. The B-cell population is ex- 1399

posed to all antigens from all classes, and an affinity 1400

value is computed for each B-cell/antigen comparison. 1401

A rank-based scoring is established for each B-cell. 1402

(2.2.2) Compute fitness. A fitness index is computed for 1403

each B-cell, based on the rank scores for antigens in 1404

the same class and the rank scores for antigens in 1405

all other classes. B-cells that recognize better antigens 1406

from the same class have fitness score higher than one, 1407

whereas B-cells that recognize better antigens from 1408

other classes have fitness score lower than one. 1409

(2.2.3) Pruning. A user-defined parameter, between 1410

[0; 1], sets the minimum fitness score of a B-cell. All 1411

B-cells with fitness scores lower than this threshold are 1412

removed from the population. 1413

(2.2.4) Affinity maturation. After pruning, the B-cell 1414

population contains only cells that can identify anti- 1415

gens from the same class. To improve the B-cell recog- 1416
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nition ability, the system undergoes an affinity matu-1417

ration process based on cloning and hypermutation.1418

(2.2.4.1) Order population. The B-cell population is or-1419

dered in the descending order of the fitness scores.1420

(2.2.4.2) Generate clones. Each B-cell is cloned propor-1421

tional to its fitness rank. The rank ratio for a B-cell is:1422

ri D rank
S

1423

where ri is the rank ration of the ith B-cell, rank is the1424

actual index of the B-cell in the ordered sequence, rank1425

2 [1; S], and S is the total number of B-cell in the popu-1426

lation (class). The number of clones generated for each1427

B-cell is:1428

NCi D

66666664
ri
SP

jD1
r j

N C 0:5

777777751429

where N is the total number of antigens in the same1430

class.1431

(2.2.4.3) Mutate clones. The clones are mutated by the1432

inverse of the B-cell rank ratios. As a result of this1433

procedure, clones of B-cells with higher ranks undergo1434

small mutations, whereas clones of B-cells with lower1435

ranks go through largemutations. All clones generated1436

are added to the B-cell population.1437

(2.2.5) Insert random antigens. In order to increase the1438

diversity of the B-cell population, a random selection1439

of antigens from the same class is added to the B-cell1440

pool. The number of antigens added is equal to the1441

number of B-cells deleted during the pruning pro-1442

cess from step (2.2.3). The diversity introduced by the1443

antigen-based B-cells is particularly useful whenever1444

the affinity maturation process converges to a limited1445

number of B-cells.1446

(3) Final pruning. This step removes B-cells with low fit-1447

ness after the system finishes the training for each anti-1448

gen class and for the set number of generations G.1449

(3.1) Compute fitness. Each B-cell population (class) is1450

exposed to all antigens, one antigen at a time, and only1451

the best matching B-cells receive a score.1452

(3.2) Pruning. Similarly with the pruning process from1453

step (2.2.3), all B-cells with low fitness scores lower are1454

removed from the population.1455

(4) Select classifier. The populations of B-cells that sur-1456

vive the final pruning represent the classifier for new,1457

unknown antigens. During the classification process,1458

each B-cell class is exposed to the unknown antigen,1459

and an avidity index is computed. Then the B-cell pop-1460

ulations compete for the unknown antigen that takes1461

the class label of the B-cell population with the highest 1462

avidity index. 1463

The IMMUNOS-99 system was evaluated in several 1464

drug design studies, namely structure-activity relation- 1465

ships for acetylcholinesterase inhibitors, virtual screening 1466

of cyclooxygenase-2 inhibitors, recognition of benzodi- 1467

azepine receptor ligands, and classification of thrombin in- 1468

hibitors. All examples presented here investigate the influ- 1469

ence of the seed population percentage SPP. SPP is a user 1470

defined parameter that specifies the percentage of the anti- 1471

gen population from each class that is used as seed for the 1472

B-cell population. If SPP D 100% then the initial B-cell 1473

population is identical with the antigen population in the 1474

same class. The influence of the SPP parameter was inves- 1475

tigated in series of L20%O cross-validation experiments. 1476

For each drug design dataset, the IMMUNOS-99 classifier 1477

was trained for 19 values of the SPP parameter, between 1478

0.05 and 0.95. 1479

IMMUNOS-99 structure-activity relationships were 1480

developed for a dataset of 111 acetylcholinesterase (AChE) 1481

inhibitors characterized by 63 structural descriptors [133]. 1482

The classifiers were trained to discriminate between 55 in- 1483

hibitors in class +1 (pIC50 between 9.52 and 6.87) and 56 1484

inhibitors in class �1 (pIC50 between 6.84 and 4.27). The 1485

prediction MCC increases from 0.1349 for SPP D 0:05, 1486

has a maximum of 0.2847 for SPP D 0:35, and then de- 1487

creases to 0.2110 for SPP D 0:95 (Table 15a). These re- 1488

sults suggest that seeding the B-cell population with less 1489

than half of the antigen population improves the predic- 1490

tion statistics. The number of structural descriptors is re- 1491

duced to 9 by feature selection, which results in a slight 1492

decrease in the IMMUNOS-99 predictions (Table 15b). 1493

The virtual screening of cyclooxygenase-2 (COX2) in- 1494

hibitors may be efficiently done with IMMUNOS-99, as 1495

shown for 322 compounds (162 compounds in class +1, 1496

pIC50 between 9 and 6.60; 160 compounds in class �1, 1497

pIC50 between 6.59 and 4) [134]. Starting from a set of 1498

74 structural descriptors, several IMMUNOS-99 classi- 1499

fiers were developed to study the influence of the SPP pa- 1500

rameter (Table 16a). The results obtained from this se- 1501

ries of experiments indicate that the prediction statistics 1502

have similar values for a wide range of the SPP parame- 1503

ter, with a small improvement for SPP D 0:45. The num- 1504

ber of structural descriptors was reduced by feature selec- 1505

tion to 12 important descriptors, thus improving the pre- 1506

dictions of the IMMUNOS-99 classifiers (Table 16b). The 1507

best results are obtained for SPP D 0:75 (Ac D 0:6429, 1508

MCC D 0:3855), but FP is still too large, i. e., too many 1509

inactive compounds are predicted as active. 1510
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Drug Design, Artificial Intelligence Methods in, Table 15
IMMUNOS-99 prediction statistics for AChE SAR models com-
puted for various values of the seed population percentage SPP

SPP TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 63 structural descriptors
0.05 30 25 33 23 0.5455 0.5893 0.5676 0.1349
0.10 45 10 22 34 0.8182 0.3929 0.6036 0.2329
0.15 44 11 18 38 0.8000 0.3214 0.5586 0.1382
0.35 45 10 25 31 0.8182 0.4464 0.6306 0.2847
0.50 45 10 22 34 0.8182 0.3929 0.6036 0.2329
0.70 43 12 23 33 0.7818 0.4107 0.5946 0.2072
0.85 44 11 23 33 0.8000 0.4107 0.6036 0.2286
0.95 44 11 23 33 0.8000 0.4107 0.6036 0.2286
(b) 9 structural descriptors
0.05 35 20 21 35 0.6364 0.3750 0.5045 0.0118
0.10 41 14 18 38 0.7455 0.3214 0.5315 0.0738
0.15 47 8 15 41 0.8545 0.2679 0.5586 0.1510
0.35 48 7 6 50 0.8727 0.1071 0.4865 -0.0313
0.50 53 2 3 53 0.9636 0.0536 0.5045 0.0415
0.70 55 0 3 53 1.0000 0.0536 0.5225 0.1652
0.85 54 1 3 53 0.9818 0.0536 0.5135 0.0949
0.95 54 1 2 54 0.9818 0.0357 0.5045 0.0541

Drug Design, Artificial Intelligence Methods in, Table 16
IMMUNOS-99 prediction statistics for COX2 SAR models com-
puted for various values of the seed population percentage SPP

SPP TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 74 structural descriptors
0.05 113 49 72 88 0.6975 0.4500 0.5745 0.1523
0.15 104 58 75 85 0.6420 0.4688 0.5559 0.1124
0.30 93 69 91 69 0.5741 0.5687 0.5714 0.1428
0.45 90 72 96 64 0.5556 0.6000 0.5776 0.1557
0.60 93 69 93 67 0.5741 0.5813 0.5776 0.1553
0.75 90 72 94 66 0.5556 0.5875 0.5714 0.1431
0.85 93 69 89 71 0.5741 0.5563 0.5652 0.1303
0.95 93 69 90 70 0.5741 0.5625 0.5683 0.1366
(b) 12 structural descriptors
0.05 160 2 25 135 0.9877 0.1562 0.5745 0.2596
0.15 159 3 34 126 0.9815 0.2125 0.5994 0.3041
0.30 158 4 43 117 0.9753 0.2687 0.6242 0.3456
0.45 159 3 41 119 0.9815 0.2562 0.6211 0.3461
0.60 159 3 46 114 0.9815 0.2875 0.6366 0.3744
0.75 159 3 48 112 0.9815 0.3000 0.6429 0.3855
0.85 157 5 50 110 0.9691 0.3125 0.6429 0.3742
0.95 158 4 50 110 0.9753 0.3125 0.6460 0.3852

Drug Design, Artificial Intelligence Methods in, Table 17
IMMUNOS-99 prediction statistics for BZR SARmodels computed
for various values of the seed population percentage SPP

SPP TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 75 structural descriptors
0.05 48 34 47 34 0.5854 0.5802 0.5828 0.1656
0.15 35 47 68 13 0.4268 0.8395 0.6319 0.2922
0.25 39 43 67 14 0.4756 0.8272 0.6503 0.3232
0.35 35 47 70 11 0.4268 0.8642 0.6442 0.3233
0.50 36 46 69 12 0.4390 0.8519 0.6442 0.3191
0.65 34 48 69 12 0.4146 0.8519 0.6319 0.2960
0.75 36 46 71 10 0.4390 0.8765 0.6564 0.3506
0.95 36 46 70 11 0.4390 0.8642 0.6503 0.3347
(b) 16 structural descriptors
0.05 57 25 39 42 0.6951 0.4815 0.5890 0.1808
0.15 55 27 51 30 0.6707 0.6296 0.6503 0.3006
0.25 54 28 51 30 0.6585 0.6296 0.6442 0.2883
0.35 55 27 49 32 0.6707 0.6049 0.6380 0.2763
0.50 53 29 49 32 0.6463 0.6049 0.6258 0.2515
0.65 51 31 51 30 0.6220 0.6296 0.6258 0.2516
0.75 50 32 51 30 0.6098 0.6296 0.6196 0.2394
0.95 50 32 51 30 0.6098 0.6296 0.6196 0.2394

The IMMUNOS-99 immune system was also tested 1511

for the dataset of benzodiazepine receptor (BZR) ligands 1512

(82 high affinity ligands and 81 low affinity ligands) [123]. 1513

The best predictions for the entire pool of 75 structural 1514

descriptors were obtained for SPP D 0:75 (Ac D 0:6564, 1515

MCC 0.3506; Table 17a). To evaluate the importance of 1516

feature selection, the number of structural descriptors was 1517

reduced to 16 and the entire analysis was repeated for the 1518

full range of SPP values. Although FN decreases (active 1519

compounds predicted inactive), FP increases which results 1520

in slightly worse predictions (Table 17b). The best pre- 1521

dictions are obtained also for SPP D 0:15 (Ac D 0:6503, 1522

MCC D 0:3006), but the results suggest that IMMUNOS- 1523

99 predictions do not improve with feature selection. 1524

The classification of thrombin (THR) inhibitors with 1525

IMMUNOS-99 was investigated for 88 chemicals (44 com- 1526

pounds in class +1, pKi between 8.48 and 6.70; 44 com- 1527

pounds in class �1, pKi between 6.68 and 4.36) and 66 1528

structural descriptors [135]. The prediction statistics indi- 1529

cate that the IMMUNOS-99 is not very successful in dis- 1530

criminating thrombin inhibitors from non-inhibitors (Ta- 1531

ble 18a). In all 19 experiments that explore the influence 1532

of the SPP parameter, almost all chemical compounds are 1533

predicted in the class +1 (inhibitors). As a result, FN is 1534

small (which is good) but FP is very large (which is bad), 1535

and the overall statistics are low. A maximum is identi- 1536

fied for SPP D 0:15 (Ac D 0:5568, MCC D 0:2100). Fea- 1537
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Drug Design, Artificial Intelligence Methods in, Table 18
IMMUNOS-99 prediction statistics for THR SAR models com-
puted for various values of the seed population percentage SPP

SPP TPp FNp TNp FPp Sep Spp Acp MCCp
(a) 66 structural descriptors
0.05 38 6 10 34 0.8636 0.2273 0.5455 0.1179
0.15 43 1 6 38 0.9773 0.1364 0.5568 0.2100
0.25 44 0 2 42 1.0000 0.0455 0.5227 0.1525
0.40 44 0 2 42 1.0000 0.0455 0.5227 0.1525
0.50 43 1 1 43 0.9773 0.0227 0.5000 0.0000
0.65 43 1 2 42 0.9773 0.0455 0.5114 0.0626
0.80 44 0 1 43 1.0000 0.0227 0.5114 0.1072
0.95 43 1 2 42 0.9773 0.0455 0.5114 0.0626
(b) 7 structural descriptors
0.05 41 3 7 37 0.9318 0.1591 0.5455 0.1432
0.15 44 0 6 38 1.0000 0.1364 0.5682 0.2705
0.25 44 0 3 41 1.0000 0.0682 0.5341 0.1879
0.40 44 0 5 39 1.0000 0.1136 0.5568 0.2454
0.50 44 0 5 39 1.0000 0.1136 0.5568 0.2454
0.65 44 0 5 39 1.0000 0.1136 0.5568 0.2454
0.80 44 0 4 40 1.0000 0.0909 0.5455 0.2182
0.95 44 0 3 41 1.0000 0.0682 0.5341 0.1879

ture selection reduces the pool of descriptors to 7, and re-1538

sults in slightly better models (Table 18b). FP is still too1539

large for the whole range of SPP values, which explains1540

the low values for the statistical indices. Compared with1541

the other three artificial immune systems, IMMUNOS-991542

seems to be the most difficult to tune in order to obtain1543

good predictions. Feature selection has no or small effect1544

in improving IMMUNOS-99 models, which suggests that1545

other algorithms should be investigated to reduce the pool1546

of structural descriptors.1547

Future Directions1548

Pharmaceutical drug discovery use computer-assisted1549

molecular design to increase the chances of bringing1550

a drug on the market, and to lower the research and de-1551

velopment costs. Computational models are used to sim-1552

ulate the physical, chemical, biological, and toxicological1553

properties of drug candidates, thus replacing expensive1554

and time-consuming large scale experiments. The entire1555

process consists of iterative steps, in which experimen-1556

tal results are used to train computational models, which1557

in turn suggest novel molecules that are synthesized and1558

tested in the laboratory. We reviewed here the most im-1559

portant artificial intelligence algorithms used in drug de-1560

sign, namely genetic algorithms, ant colony optimization,1561

particle swarm optimization, and artificial immune sys-1562

tems. The main advantage of artificial intelligence algo- 1563

rithms is their ability to explore search spaces of high 1564

dimensionality, and to identify the global optimum for 1565

complex and difficult problems. Genetic algorithms have 1566

a long history of applications in QSAR and drug design, 1567

and their operation is thoroughly explored. The other ar- 1568

tificial intelligence algorithms were adopted only recently, 1569

but they already demonstrated strong results that make 1570

them competitors for GA. More important, ACO, PSO 1571

and AIS bring new simulation capabilities, thus comple- 1572

menting GA. A promising direction of development is 1573

a combined use of these artificial intelligence algorithms 1574

that could provide better predictions of molecular prop- 1575

erties. Another source of improvement might come from 1576

the integration of themolecular graph into the artificial in- 1577

telligence algorithms, which would complement (or even 1578

substitute) the use of structural descriptors. 1579
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